Solveeit Logo

Question

Mathematics Question on Functions

Let f(x)=ax+bcx+df (x) = \frac{ax+ b}{cx + d} , then fof(x)=xfof(x) = x, provided that :

A

d = - a

B

d = a

C

a = b = 1

D

a = b = c = d = 1

Answer

d = - a

Explanation

Solution

f(x)=ax+bcx+df\left(x\right) = \frac{ax+b}{cx+d} fof \left(x\right) = \frac{a\left\\{\frac{ax+b}{cx+d}\right\\}+b}{c\left\\{\frac{ax+b}{cx+d}\right\\}+d} \Rightarrow \frac{a^{2}x + ab+bcx+bd}{acx+bc+cdx+d^{2}} = x (ac+dc)x2+(bc+d2bca2)xabbd=0,xR\Rightarrow \left(ac+dc\right)x^{2} +\left(bc +d^{2}-bc -a^{2}\right)x -ab-bd=0 , \forall x \in R (a+d)c=0,d2a2=0(a+d)b=0 \Rightarrow \left(a+d\right)c = 0, d^{2}-a^{2} =0 \left(a + d\right)b = 0 a+d=0 \Rightarrow a +d = 0