Solveeit Logo

Question

Mathematics Question on Limits

Let f (x) = 118x2 \frac {1} {\sqrt {18-x^2}}, ten value o f limx3(f(x)f(3)x3)\lim_{x \to 3} (\frac {f(x)-f(3)} {x-3})

A

0

B

19-\frac {1} {9}

C

13-\frac {1} {3}

D

19\frac {1} {9}

Answer

19\frac {1} {9}

Explanation

Solution

limx3(18x2)12(13)x3=limx3318x23(x3)18x2\lim _{x\to 3} \frac{\left(18 -x^{2}\right)^{-\frac{1}{2} }- \left(\frac{1}{3}\right)}{x-3} =\lim _{x\to 3} \frac{3 -\sqrt{18 -x^{2}}}{3\left(x-3\right) \sqrt{18 -x^{2}} } = limx3[9(18x2)3(x3)18x2(3+18x2)]\lim _{x\to 3} \left[\frac{9-\left(18 -x^{2}\right)}{3\left(x-3\right) \sqrt{18 -x^{2}}\left(3+\sqrt{18 -x^{2}}\right)}\right] = limx3x293(x3)18x2[3+18x2]\lim _{x\to 3} \frac{x^{ 2} -9}{3\left(x-3\right) \sqrt{18 -x^{2} } \left[3+\sqrt{18 -x^{2}}\right]} = limx3x+3318x2[3+18x2]\lim _{x\to 3} \frac{x+3}{3\sqrt{18-x^{2}} \left[3+\sqrt{18 -x^{2}}\right] } = 63(3)(3+3)=19\frac{6}{3\left(3\right)\left(3+3\right)} =\frac{1}{9}