Solveeit Logo

Question

Mathematics Question on Relations and functions

Let f(x)=17sin5xf(x) = \frac{1}{7 - \sin 5x} be a function defined on R\mathbb{R}. Then the range of the function f(x)f(x) is equal to:

A

[18,15]\left[\frac{1}{8}, \frac{1}{5}\right]

B

[17,16]\left[\frac{1}{7}, \frac{1}{6}\right]

C

[17,15]\left[\frac{1}{7}, \frac{1}{5}\right]

D

[18,16]\left[\frac{1}{8}, \frac{1}{6}\right]

Answer

[18,16]\left[\frac{1}{8}, \frac{1}{6}\right]

Explanation

Solution

Since sin5x[1,1]\sin 5x \in [-1, 1], we have:
sin5x[1,1]-\sin 5x \in [-1, 1]
Therefore:
7sin5x[6,8]7 - \sin 5x \in [6, 8]
Thus, the function f(x)=17sin5xf(x) = \frac{1}{7 - \sin 5x} takes values in the interval:
17sin5x[18,16]\frac{1}{7 - \sin 5x} \in \left[\frac{1}{8}, \frac{1}{6}\right]
Therefore, the range of f(x)f(x) is:
[18,16].\left[\frac{1}{8}, \frac{1}{6}\right].