Solveeit Logo

Question

Question: Let \[f'(x) = \dfrac{{192{x^3}}}{{(2 + {{\sin }^4}\pi x)}}\]for all \[x \in R\] with \[f(\dfrac{1}{2...

Let f(x)=192x3(2+sin4πx)f'(x) = \dfrac{{192{x^3}}}{{(2 + {{\sin }^4}\pi x)}}for all xRx \in R with f(12)=0f(\dfrac{1}{2}) = 0. If m121f(x)dxMm \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x)dx} \leqslant M, then the possible values of m and M are,

A.m=13,M=24m = 13,M = 24

B.m=14,M=12m = \dfrac{1}{4},M = \dfrac{1}{2}

C.m=11,M=0m = - 11,M = 0

D.m=1,M=12m = 1,M = 12

Explanation

Solution

Firstly the condition for as x[12,1]x \in [\dfrac{1}{2},1] so putting the limiting value of x we can calculate the ranging value of f(x)f'(x).

Hence, after getting the idea of the value of f(x)f'(x) integrate both sides and get the range of f(x)f(x). Hence, after getting the range of value of f(x)f(x) so we will get the values of m and M. Hence, our required answer will be obtained.

Complete step-by-step answer:

As the given equation is f(x)=192x3(2+sin4πx)f'(x) = \dfrac{{192{x^3}}}{{(2 + {{\sin }^4}\pi x)}}for all xRx \in R with f(12)=0f(\dfrac{1}{2}) = 0,

So, calculate the value of f(x)f'(x) for x[12,1]x \in [\dfrac{1}{2},1].

Hence at x=12x = \dfrac{1}{2},

f(12)=192(12)3(2+sin4(π2))f'(\dfrac{1}{2}) = \dfrac{{192{{(\dfrac{1}{2})}^3}}}{{(2 + {{\sin }^4}(\dfrac{\pi }{2}))}}

Now using sinπ2=1\sin \dfrac{\pi }{2} = 1, and simplification we get,

f(12)=(1928)(2+1) \Rightarrow f'(\dfrac{1}{2}) = \dfrac{{(\dfrac{{192}}{8})}}{{(2 + 1)}}

On solving we get,

f(12)=243=8 \Rightarrow f'(\dfrac{1}{2}) = \dfrac{{24}}{3} = 8

Now, calculate with above same procedure at x=1x = 1,

f(1)=192(1)3(2+sin4(π))f'(1) = \dfrac{{192{{(1)}^3}}}{{(2 + {{\sin }^4}(\pi ))}}

Using, sinπ=0\sin \pi = 0, we get,

f(1)=192(2)=96 \Rightarrow f'(1) = \dfrac{{192}}{{(2)}} = 96

Hence the range of values of f(x)f'(x) can be given as,

8f(x)968 \leqslant f'(x) \leqslant 96

Now, we can apply the integration in the above inequality for the value of x[12,x]x \in [\dfrac{1}{2},x]

12x8.dx12xf(x).dx12x96.dx \Rightarrow \int\limits_{\dfrac{1}{2}}^x 8 .dx \leqslant \int\limits_{\dfrac{1}{2}}^x {f'(x).dx} \leqslant \int\limits_{\dfrac{1}{2}}^x {96.} dx

On integrating we get,

8x12xf(x)12x96x12x \Rightarrow \left. {8x} \right|_{\dfrac{1}{2}}^x \leqslant \left. {f(x)} \right|_{\dfrac{1}{2}}^x \leqslant \left. {96x} \right|_{\dfrac{1}{2}}^x

Now, on applying limits we get ,

8x4f(x)f(12)96x48 \Rightarrow 8x - 4 \leqslant f(x) - f(\dfrac{1}{2}) \leqslant 96x - 48

As the value of f(12)=0f(\dfrac{1}{2}) = 0 so the above inequality will be,

8x4f(x)96x48 \Rightarrow 8x - 4 \leqslant f(x) \leqslant 96x - 48

Now integrate the f(x)f(x) with the condition given in the question as,

1218x4.dx121f(x).dx12196x48.dx\Rightarrow \int\limits_{\dfrac{1}{2}}^1 {8x - 4.dx} \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x).dx} \leqslant \int\limits_{\dfrac{1}{2}}^1 {96x - 48.dx}

Hence, on integrating both sides of the inequality the maxima and minima value of the function can be obtained.

4x21214x121121f(x).dx48x212148x121 \Rightarrow 4{x^2}|_{\dfrac{1}{2}}^1 - 4x|_{\dfrac{1}{2}}^1 \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x).dx} \leqslant 48{x^2}|_{\dfrac{1}{2}}^1 - 48x|_{\dfrac{1}{2}}^1

On applying limits we get,

4(114)4(112)121f(x).dx48(114)48(112) \Rightarrow 4(1 - \dfrac{1}{4}) - 4(1 - \dfrac{1}{2}) \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x).dx} \leqslant 48(1 - \dfrac{1}{4}) - 48(1 - \dfrac{1}{2})

On further simplifying, we get,

4(34)4(12)121f(x).dx48(34)48(12)\Rightarrow 4(\dfrac{3}{4}) - 4(\dfrac{1}{2}) \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x).dx} \leqslant 48(\dfrac{3}{4}) - 48(\dfrac{1}{2})

32121f(x).dx3624\Rightarrow 3 - 2 \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x).dx} \leqslant 36 - 24

1121f(x).dx12\Rightarrow 1 \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x).dx} \leqslant 12

From here we can obtain the idea about maximum and minimum value of the function.

So, option (D) is the correct answer.

Note: Estimate the range of x and from there calculate the range of f(x)f'(x)and f(x)f(x). Hence integrate properly and the required answer will be obtained.
And use the concept of estimated value of function properly. If you did not know the value of f(x)f(x) then calculate the value of the known function which is just bigger or smaller than f(x)f(x).