Solveeit Logo

Question

Mathematics Question on Application of derivatives

Let f(x)=cosxsin2xf(x) = \cos x \sin 2x, then

A

minf(x)=133min\,f(x)=-\frac{1}{3\sqrt3} for x[π,π]x\,\in \,[-\pi,\pi]

B

minf(x)>97min\,f(x)>-\frac{9}{7} or 79 -\frac{7}{9} for x[π,π] x\, \in\,[-\pi,\pi]

C

minf(x)>19min\,f(x)>-\frac{1}{9} for x[π,π]x \, \in\,[-\pi,\pi]

D

minf(x)>29min\,f(x)>-\frac{2}{9} for x[π,π]x\, \in\,[-\pi,\pi]

Answer

minf(x)>97min\,f(x)>-\frac{9}{7} or 79 -\frac{7}{9} for x[π,π] x\, \in\,[-\pi,\pi]

Explanation

Solution

f(x)=cosxsin2x=cosx(2sinxcosx)f(x) = cos \,x \,sin\, 2x = cos \,x(2sin \,x \,cos \,x) =2sinx(1sin2x)=2sinx2sin3x= 2 \,sin \,x (1 - sin^2 \,x) = 2 \,sin \,x - 2 \,sin^3 \,x min. f(x)=f(x) = min.g(t)g(t) where g(t)=2t2t3g(t) = 2t - 2t^3 x[π,π]x \in [-\pi, \pi], t[1,1]t\,\in [- 1, 1] g(t)=26t2=0g'(t) = 2 - 6t^2 = 0 t=±13,g(t)=12t\Rightarrow t = \pm \frac{1}{\sqrt{3}}, g''\left(t\right) = -12t g(13)<0\therefore g''\left(\frac{1}{\sqrt{3}}\right) < 0 and g(13>0)g'' \left(-\frac{1}{\sqrt{3}} > 0\right) Hence min. g(t)=g(13),t[1,1]g\left(t\right) = g \left(-\frac{1}{\sqrt{3}} \right), t\,\in \left[-1, 1\right] =23+2133= -\frac{2}{\sqrt{3}}+2\cdot\frac{1}{3\sqrt{3}} =433>79>97=- \frac{4}{3\sqrt{3}} > -\frac{7}{9} > -\frac{9}{7}