Question
Mathematics Question on Application of derivatives
Let f(x)=cosxsin2x, then
A
minf(x)=−331 for x∈[−π,π]
B
minf(x)>−79 or −97 for x∈[−π,π]
C
minf(x)>−91 for x∈[−π,π]
D
minf(x)>−92 for x∈[−π,π]
Answer
minf(x)>−79 or −97 for x∈[−π,π]
Explanation
Solution
f(x)=cosxsin2x=cosx(2sinxcosx) =2sinx(1−sin2x)=2sinx−2sin3x min. f(x)= min.g(t) where g(t)=2t−2t3 x∈[−π,π], t∈[−1,1] g′(t)=2−6t2=0 ⇒t=±31,g′′(t)=−12t ∴g′′(31)<0 and g′′(−31>0) Hence min. g(t)=g(−31),t∈[−1,1] =−32+2⋅331 =−334>−97>−79