Solveeit Logo

Question

Real Analysis Question on Functions of One Real Variable

Let f(x) = cos(x) and g(x) =1x221-\frac{x^2}{2} for x(π2,π2)x \in (-\frac{\pi}{2},\frac{\pi}{2}). Then

A

f(x) ≥ g(x) for all x(π2,π2)x \in (-\frac{\pi}{2},\frac{\pi}{2})

B

f(x) ≤ g(x) for all x(π2,π2)x \in (-\frac{\pi}{2},\frac{\pi}{2})

C

f(x) − g(x) changes sign exactly once on (π2,π2)(-\frac{\pi}{2},\frac{\pi}{2})

D

f(x) − g(x) changes sign more than once on (π2,π2)(-\frac{\pi}{2},\frac{\pi}{2})

Answer

f(x) ≥ g(x) for all x(π2,π2)x \in (-\frac{\pi}{2},\frac{\pi}{2})

Explanation

Solution

The correct option is (A) : f(x) ≥ g(x) for all x(π2,π2)x \in (-\frac{\pi}{2},\frac{\pi}{2}).