Solveeit Logo

Question

Mathematics Question on integral

Let f(x)=1+sin2xcos2xsin2x sin2x1+cos2xsin2x sin2xcos2x1+sin2x,x[π6,π3]f(x)= \begin{vmatrix} 1+\sin ^2 x & \cos ^2 x & \sin 2 x \\\ \sin ^2 x & 1+\cos ^2 x & \sin 2 x \\\ \sin ^2 x & \cos ^2 x & 1+\sin 2 x\end{vmatrix}, x \in\left[\frac{\pi}{6}, \frac{\pi}{3}\right] If α\alpha and β\beta respectively are the maximum and the minimum values of ff, then

A

β2+2α=194\beta^2+2 \sqrt{\alpha}=\frac{19}{4}

B

α2+β2=92\alpha^2+\beta^2=\frac{9}{2}

C

α2β2=43\alpha^2-\beta^2=4 \sqrt{3}

D

β22α=194\beta^2-2 \sqrt{\alpha}=\frac{19}{4}

Answer

β22α=194\beta^2-2 \sqrt{\alpha}=\frac{19}{4}

Explanation

Solution

C1​→C1​+C2​+C3​
f(x)=∣∣​2+sin2x2+sin2x2+sin2x​cos2x1+cos2xcos2x​sin2xsin2x1+sin2x​∣∣​
f(x)=(2+sin2x)∣∣​111​cos2x1+cos2xcos2x​sin2xsin2x1+sin2x​∣∣​
R2​→R2​−R1​
R3​→R3​−R1​
f(x)=2+sin2x)∣∣​100​cos2x10​sin2x01​∣∣​
=(2+sin2x)(1)=2+sin2x
=sin2x∈[23​​,1]
Hence 2+sin2x∈[2+23​​,3]