Question
Mathematics Question on integral
Let f(x)=1+sin2x sin2x sin2xcos2x1+cos2xcos2xsin2xsin2x1+sin2x,x∈[6π,3π] If α and β respectively are the maximum and the minimum values of f, then
A
β2+2α=419
B
α2+β2=29
C
α2−β2=43
D
β2−2α=419
Answer
β2−2α=419
Explanation
Solution
C1→C1+C2+C3
f(x)=∣∣2+sin2x2+sin2x2+sin2xcos2x1+cos2xcos2xsin2xsin2x1+sin2x∣∣
f(x)=(2+sin2x)∣∣111cos2x1+cos2xcos2xsin2xsin2x1+sin2x∣∣
R2→R2−R1
R3→R3−R1
f(x)=2+sin2x)∣∣100cos2x10sin2x01∣∣
=(2+sin2x)(1)=2+sin2x
=sin2x∈[23,1]
Hence 2+sin2x∈[2+23,3]