Solveeit Logo

Question

Mathematics Question on limits and derivatives

Let f(x)={x21,0<x<2\[2ex]2x+3,2x<3f(x) = \begin{cases} x^2-1, & 0 < x < 2{} \\\[2ex] 2x+3, & 2 \le x < 3{} \end{cases}, the quadratic equation whose roots are limx2f(x)\displaystyle \lim_{x \to 2^-}f(x) and limx2+f(x)\displaystyle \lim_{x \to 2^+}f(x) is

A

x26x+9=0x^2 -6x +9=0

B

x27x+8=0x^2 -7x +8=0

C

x214x+49=0x^2 -14x +49=0

D

x210x+21=0x^2 -10x +21=0

Answer

x210x+21=0x^2 -10x +21=0

Explanation

Solution

limx2f(x)\displaystyle \lim_{x \to 2^-}f(x) =limh0(2h)21=\displaystyle \lim_{h \to 0}(2-h)^2-1 =limh04+h24h1=3=\displaystyle \lim_{h \to 0}4+h^2-4h-1=3 limx2+f(x)\displaystyle \lim_{x \to 2^+}f(x) =limh02(2+h)+3=\displaystyle \lim_{h \to 0}2(2+h)+3 =limh04+2h+3=7=\displaystyle \lim_{h \to 0}4+2h+3=7 \therefore Required quadratic equation is x2(3+7)x+(3×7)=0x^2 - ( 3 + 7)x + ( 3 \times 7) = 0 x210x+21=0\Rightarrow x^2 -10x+21=0