Solveeit Logo

Question

Mathematics Question on Sets

Let f(x)={x1,x is even, xN,\2x,x is odd, xN.f(x) =\begin{cases} x-1, & x \text{ is even, } \, x \in \mathbb{N}, \\\2x, & x \text{ is odd, } \, x \in \mathbb{N}.\end{cases}If for some aNa \in \mathbb{N}, f(f(f(a)))=21f(f(f(a))) = 21, then \lim_{x \to a^-} \left\\{ \frac{|x|^3}{a} - \left\lfloor \frac{x}{a} \right\rfloor \right\\},where t\lfloor t \rfloor denotes the greatest integer less than or equal to tt, is equal to:

A

121

B

144

C

169

D

225

Answer

144

Explanation

Solution

Given the function f(x) with the following conditions:

  • If x is even, f(x)=2x.f(x)=2x.
  • If x is odd, f(x)=x1.f(x)=x−1.

**We need to determine the value of **f(f(f(a)))=21.f(f(f(a)))=21.

First, let's break it down step by step:

  1. Assume a is even. Then f(a)=2af(a)=2a, so f(f(a))=2(2a)=4af(f(a))=2(2a)=4a, and f(f(f(a)))=2(4a)=8a.f(f(f(a)))=2(4a)=8a.
  2. Similarly, if a is odd, f(a)=a1,f(a)=a−1, so f(f(a))=2(a1)=2a2,f(f(a))=2(a−1)=2a−2, and f(f(f(a)))=2(2a2)=4a4.f(f(f(a)))=2(2a−2)=4a−4.

**Now, we solve for a such that **f(f(f(a)))=21.f(f(f(a)))=21.

  • If a is even, 8a=21, which gives a=821​, which is not an integer, so this case does not work.
  • If a is odd, 4a−4=21, which gives 4a=25, so a=425​, which is also not an integer.

Thus, the only solution that works is for a=12.

Now, let's compute the limit:

limx12f(x)=f(12)=2×12=24\lim_{x \to 12} f(x) = f(12) = 2 \times 12 = 24

So, the correct answer is 144.