Solveeit Logo

Question

Mathematics Question on Logarithmic Differentiation

Let f(x)={tanx,if 0xπ4 ax+b,if π4<x<π2f(x) = \begin{cases} \tan x, & if\ 0\leq x\leq \frac{\pi}{4} \\\ ax+b, & if\ \frac{\pi}{4}\lt x\lt \frac{\pi}{2} \end{cases}, If f(x) is differentiable at x=π4x=\frac{\pi}{4}, then the values of a and b are respectively

A

2,2π22,\frac{2-\pi}{2}

B

2,4π42,\frac{4-\pi}{4}

C

1,π41,\frac{-\pi}{4}

D

2,π42,\frac{-\pi}{4}

E

2,1-π

Answer

2,2π22,\frac{2-\pi}{2}

Explanation

Solution

The correct option is (A) : 2,2π22,\frac{2-\pi}{2}