Solveeit Logo

Question

Mathematics Question on Differentiability

Let f(x)={x3+x216x+20(x2)2ifx2 bif x = 2f(x) = \begin{cases} \frac{x^3+x^2-16x+20}{(x-2)^2} & if x \neq 2 \\\ b & \text{if x = 2} \end{cases} If f(x)f(x) is continuous for all xx , then bb is equal to

A

7

B

3

C

2

D

5

Answer

7

Explanation

Solution

The correct answer is A:7
Given that;
f(x)=x3+x216x+20(x2)2,x2f(x)=\frac{x^3+x^2-16x+20}{(x-2)^2},x\neq2
The given function is continuous at x=2x=2
limx2f(x)=limx2+f(x)=f(2)\therefore \underset{x\rightarrow 2^-}{\lim}f(x)=\underset{x\rightarrow 2^+}{\lim}f(x)=f(2)
limx2=f(2)\underset{x\rightarrow 2}{\lim}=f(2)
Now,consider limx2f(x)=limx2x3+x216x+20(x2)2\underset{x\rightarrow 2}{\lim}f(x)=\underset{x\rightarrow 2}{\lim}\frac{x^3+x^2-16x+20}{(x-2)^2}
=limx2(x+5)=7=\underset{x\rightarrow 2}{\lim}(x+5)=7
f(2)=7\therefore f(2)=7
limits