Question
Mathematics Question on Limits
Let f(x)={a(x)sin2π x −(n+1)/2for x=0forx=0 where α(x) is such that x→0lim∣α(x)∣=∞ Then the function f(x) is continuous at x=0 if α(x) is chosen as
A
x1
B
πx2
C
x21
D
πx22
Answer
πx2
Explanation
Solution
Given,
f(x) =
\begin{cases}
\alpha(x) \sin\,\frac{\pi\,x}{2} & \text{for X \neq 0} \\\[2ex]
1 & \text{forx=0}
\end{cases}\,...(i)
For f(x) to be continuous at x=0
x→0limf(x)=f(0)
From E (i), f(0)=1
∴ For f(x) to be continuous at x=0
x→0limα(x)sin2πx=1
The above limit is equal to 1, when
α(x)=πx2
i.e. x→0lim2πxsin2πX=1
[∵x→0limθsinθ=1]