Solveeit Logo

Question

Mathematics Question on Limits

Let f(x)={a(x)sinπ x2for x0 (n+1)/2forx=0f(x) = \begin{cases} a (x) \sin \frac{\pi \ x }{2} & \text{for } x \neq 0 \\\ -(n+1)/2 & \text{for} x = 0 \end{cases} where α(x)\alpha (x) is such that limx0α(x)=\displaystyle\lim_{x \to 0} |\alpha (x) | = \infty Then the function f(x)f(x) is continuous at x=0x = 0 if α(x)\alpha (x) is chosen as

A

1x\frac{1}{x}

B

2πx\frac{2}{ \pi x}

C

1x2\frac{1}{x^2 }

D

2πx2\frac{2}{ \pi x^2 }

Answer

2πx\frac{2}{ \pi x}

Explanation

Solution

Given,
f(x) = \begin{cases} \alpha(x) \sin\,\frac{\pi\,x}{2} & \text{for X \neq 0} \\\[2ex] 1 & \text{forx=0} \end{cases}\,...(i)
For f(x)f(x) to be continuous at x=0x=0
limx0f(x)=f(0)\displaystyle\lim _{x \rightarrow 0} f(x)=f(0)
From E (i), f(0)=1f(0)=1
\therefore For f(x)f(x) to be continuous at x=0x=0
limx0α(x)sinπx2=1\displaystyle\lim _{x \rightarrow 0} \alpha(x) \sin \frac{\pi x}{2}=1
The above limit is equal to 1, when
α(x)=2πx\alpha(x)=\frac{2}{\pi x}
i.e. limx0sinπX2πx2=1\displaystyle\lim _{x \rightarrow 0} \frac{\sin \frac{\pi X}{2}}{\frac{\pi x}{2}}=1
[limx0sinθθ=1]\left[\because \displaystyle\lim _{x \rightarrow 0} \frac{\sin \theta}{\theta}=1\right]