Solveeit Logo

Question

Mathematics Question on Functions

Let f(x)={aif ax0, x+aif 0<xaf(x) = \begin{cases} -a & \text{if } -a \leq x \leq 0, \\\ x + a & \text{if } 0<x \leq a \end{cases} where a>0a>0 and g(x)=(f(x)f(x))/2g(x) = (f(|x|) - |f(x)|)/2. Then the function g:[a,a][a,a]g : [-a, a] \to [-a, a] is:

A

neither one-one nor onto.

B

both one-one and onto.

C

one-one.

D

onto.

Answer

neither one-one nor onto.

Explanation

Solution

Given the piecewise function: f(x)={aif ax0 x+aif 0<xaf(x) = \begin{cases} -a & \text{if } -a \le x \le 0 \\\ x + a & \text{if } 0 < x \le a \end{cases}

and the function: g(x)=f(x)f(x)2.g(x) = \frac{f(|x|) - |f(x)|}{2}.

We will analyze the behavior of g(x)g(x) over the domain [a,a][-a, a].

Case 1: x[a,0]x \in [-a, 0] In this interval, x=x|x| = -x and f(x)=af(x) = -a.

Thus: f(x)=aandf(x)=a=a.f(|x|) = -a \quad \text{and} \quad |f(x)| = | - a | = a.

Substituting into the expression for g(x)g(x): g(x)=aa2=a.g(x) = \frac{-a - a}{2} = -a.

Case 2: x(0,a]x \in (0, a] In this interval, x=x|x| = x and f(x)=x+af(x) = x + a.

Thus: f(x)=x+aandf(x)=x+a=x+a.f(|x|) = x + a \quad \text{and} \quad |f(x)| = |x + a| = x + a.

Substituting into the expression for g(x)g(x): g(x)=(x+a)(x+a)2=0.g(x) = \frac{(x + a) - (x + a)}{2} = 0. Behavior of g(x)g(x): - For x[a,0]x \in [-a, 0], g(x)=ag(x) = -a. - For x(0,a]x \in (0, a], g(x)=0g(x) = 0.

Since g(x)g(x) takes only two distinct values (a-a and 00) over the entire interval [a,a][-a, a], it is clear that: - g(x)g(x) is not one-one (injective) because different inputs give the same output. - g(x)g(x) is not onto (surjective) because it does not cover the entire range [a,a][-a, a].

Therefore: g(x) is neither one-one nor onto.g(x) \text{ is neither one-one nor onto.}