Solveeit Logo

Question

Mathematics Question on Definite Integral

Let f(x)={\-2sinxif xπ2 A sinx+Bif π2<x<π2 cosif xπ2f(x) = \begin{cases} \- 2 \sin x & \quad \text{if } x \leq - \frac{\pi}{2}\\\ A \ \sin x + B & \quad \text{if } - \frac{\pi}{2} < x < \frac{\pi}{2} \\\ \cos & \quad \text{if } x \leq \frac{\pi}{2} \end{cases} For what values of A and B, the function f(x)f (x) is continuous throughout the real line ?

A

A = 1, B = 1

B

A = - 1, B = 1

C

A = - 1, B = - 1

D

A = 1, B = - 1

Answer

A = - 1, B = 1

Explanation

Solution

Given,
$f(x)=\begin{cases}-2 \sin X, \text { if } x \leq-\frac{\pi}{2} \\ A \sin x +B, \text { if }-\frac{\pi}{2}