Solveeit Logo

Question

Mathematics Question on Integration

Let f(x)={2,2x0 x2,0<x2f(x) = \begin{cases} -2, & -2 \leq x \leq 0 \\\ x - 2, & 0 < x \leq 2 \end{cases} and h(x)=f(x)+f(x)h(x) = f(|x|) + |f(x)|. Then 22h(x)dx\int_{-2}^{2} h(x) \, dx is equal to:

A

2

B

4

C

1

D

6

Answer

2

Explanation

Solution

Define h(x)h(x) in Terms of f(x)f(x):

Since h(x)=f(x)+f(x)h(x) = f(x) + |f(x)|, we can evaluate h(x)h(x) separately on the intervals where f(x)f(x) takes different forms:

For 2x<0-2 \leq x < 0, f(x)=xf(x) = -x, so f(x)=x|f(x)| = x. Therefore:
h(x)=f(x)+f(x)=x+x=0h(x) = f(x) + |f(x)| = -x + x = 0
For 0<x20 < x \leq 2, f(x)=x2f(x) = x - 2, so f(x)=2x|f(x)| = 2 - x (since x2<0x - 2 < 0). Thus:
h(x)=f(x)+f(x)=(x2)+(2x)=0h(x) = f(x) + |f(x)| = (x - 2) + (2 - x) = 0
This implies h(x)=0h(x) = 0 on both intervals.

Calculate 22h(x)dx\int_{-2}^2 h(x) dx: Since h(x)=0h(x) = 0 on the entire interval 2x2-2 \leq x \leq 2, we have: 22h(x)dx=220dx=0\int_{-2}^2 h(x) dx = \int_{-2}^2 0 \, dx = 0

Conclusion: 20h(x)dx=0\int_{-2}^0 h(x) dx = 0 and 02h(x)dx=2\int_0^2 h(x) dx = 2.

Therefore, the answer is 22.