Question
Mathematics Question on Differential equations
Let f(x) be differentiable on the interval (0,∞) such that f(1)=1 and limt→xt−xt2f(x)−x2f(t)=1 for each x>0 . Then, f(x) is
A
3x1+32x2
B
−3x1+34x2
C
−x1+x22
D
x1
Answer
3x1+32x2
Explanation
Solution
Given, t→xlimt−xt2f(x)−x2f(t)=1
Apply L' Hospital rule t→xlim12tf(x)−x2f′(t)=1
⇒2xf(x)−x2f′(x)=1
⇒x2f′(x)−2xf(x)=−1
⇒f′(x)−x2f(x)=−x21
It is a linear differential equation
∴IF=e∫x2dx
=e−2logx
=elog(x21)
=x21
∴ Solution is
f(x)×x21=∫−x21×x21dx+C
f(x)×x21=3x31+C
⇒f(x)=3x1+Cx2
At f(1)=1
⇒1=31+C
⇒C=32
∴f(x)=3x1+32x2