Solveeit Logo

Question

Mathematics Question on Differentiability

Let f(x),f ' (x), be differentiable x.\forall \, x. If f(1)=2f (1) = -2 and f(x)2x[1,6],f '(x) \geq 2 \forall x \in [1, 6], then

A

f(6)<8f (6) < 8

B

f(6)8f (6) \geq 8

C

f(6)5f (6) \geq 5

D

f(6)8f (6) \leq 8

Answer

f(6)8f (6) \geq 8

Explanation

Solution

Since, f(x)f' (x) is differentiable x[1,6]\forall x \in [1, 6]
\therefore By Lagrange?s mean value theorem,
f(x)=f(6)f(1)61f'(x) = \frac{f(6) - f(1)}{6 - 1}
f(x)2x[1,6]\because f'(x) \geq 2 \forall x \in [1, 6 ] (given )
f(6)+252\Rightarrow \,\therefore \frac{f(6) + 2 }{5} \geq 2 [f(1)=2\because \, f(1) = - 2]
f(6)102f(6)8\Rightarrow f(6) \geq 10 - 2 \, \Rightarrow f(6) \geq 8