Solveeit Logo

Question

Mathematics Question on Relations and functions

Let f(x) be an indefinite integral of cos3x\cos^3 x . f(x) is a periodic function of period π\pi . cos3x\cos^3 x is a periodic function.

A

Statement 1 is true, Statement 2 is false

B

Both the Statements are true, but Statement 2 is not the correct explanation of Statement 1

C

Both the Statements are true, and Statement 2 is correct explanation of Statement 1

D

Statement 1 is false, Statement 2 is true

Answer

Statement 1 is false, Statement 2 is true

Explanation

Solution

Statement - 2: cos3x\cos^3 x is a periodic function. It is a true statement. Statement - 1 Given f(x)=cos3xdxf(x) = \int \cos^3 x dx =(cos3x4+3cosx4)dx= \int \left(\frac{\cos 3x}{4} + \frac{3 \cos x}{4} \right) dx =14sin3x3+34sinx = \frac{1}{4} \frac{\sin 3 x}{3} + \frac{3}{4} \sin x =112sin3x+34sinx= \frac{1}{12} \sin 3x + \frac{3}{4} \sin x Now, period of 112sin3x=2π3\frac{1}{12} \sin 3x = \frac{2 \pi}{3} Period of 34sinx=2π\frac{3}{4} \sin x = 2 \pi Hence period of f(x)=L.C.M.(2π,2π)HCFof(1,3)f(x) = \frac{ L.C.M. (2 \pi, 2 \pi)}{HCF \, of (1,3)} =2π1=2π= \frac{2 \pi}{1} = 2 \pi Thus, f(x) is a periodic function of period 2π2 \pi . Hence, Statement - 1 is false.