Solveeit Logo

Question

Mathematics Question on Differential equations

Let f(x)f(x) be a positive function such that the area bounded by y=f(x)y = f(x), y=0y = 0, from x=0x = 0 to x=a>0x = a>0 is 0af(x)dx=ea+4a2+a1.\int_0^a f(x) \, dx = e^{-a} + 4a^2 + a - 1. Then the differential equation, whose general solution is y=c1f(x)+c2,y = c_1 f(x) + c_2, where c1c_1 and c2c_2 are arbitrary constants, is:

A

(8ex1)d2ydx2+dydx=0(8e^x - 1)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0

B

(8ex+1)d2ydx2dydx=0(8e^x + 1)\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0

C

(8ex+1)d2ydx2+dydx=0(8e^x + 1)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0

D

(8ex1)d2ydx2dydx=0(8e^x - 1)\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0

Answer

(8ex+1)d2ydx2+dydx=0(8e^x + 1)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0

Explanation

Solution

The given integral is:

0af(x)dx=ea+4a2+a1.\int_0^a f(x) dx = e^{-a} + 4a^2 + a - 1.

Step 1: Differentiate with respect to aa:

f(a)=ea+8a+1.f(a) = -e^{-a} + 8a + 1.

Step 2: Differentiate again:

f(a)=ea+8.f'(a) = e^{-a} + 8.

Step 3: General solution:

The general solution for yy is: y=c1f(x)+c2    dydx=c1f(x),d2ydx2=c1f(x).y = c_1 f(x) + c_2 \implies \frac{dy}{dx} = c_1 f'(x), \quad \frac{d^2y}{dx^2} = c_1 f''(x).

Substitute values:

f(x)=ex,f(x)=ex+8.f''(x) = -e^{-x}, \quad f'(x) = e^{-x} + 8.

The differential equation becomes:

(8ex+1)d2ydx2+dydx=0.(8e^x + 1)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0.

Final Answer:

(8ex+1)d2ydx2+dydx=0.(8e^x + 1)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0.