Solveeit Logo

Question

Question: Let\(f(x)\) be a polynomial with positive degree satisfying the relation \(f(x)f(y)=f(x)+f(y)+f(xy)-...

Letf(x)f(x) be a polynomial with positive degree satisfying the relation f(x)f(y)=f(x)+f(y)+f(xy)2f(x)f(y)=f(x)+f(y)+f(xy)-2
For all real x and y. Supposef(4)=65f(4)=65 Then
(A) f(x){{f}^{'}}(x) is a polynomial of degree two
(B) roots of equation f(x)=2x+1{{f}^{'}}(x)=2x+1 are real
(C) xf(x)=3[f(x)1]x{{f}^{'}}(x)=3\left[ f(x)-1 \right]
(D) f(1)=3{{f}^{'}}(-1)=3

Explanation

Solution

Hint: First convert the equation in one form and assumey=1xy=\dfrac{1}{x}and solve it further.

Complete step-by-step answer:
Let f(x)f(x) is a polynomial satisfying,
f(x)f(y)=f(x)+f(y)+f(xy)2f(x)f(y)=f(x)+f(y)+f(xy)-2…….. (1)
Now Let us consider y=1xy=\dfrac{1}{x}…….(2)
Now let us substitute (2) in (1) we get,
f(x)f(1x)=f(x)+f(1x)+f(1)2f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+f(1)-2……….. (3)
Let us take x=1x=1 So substituting the value of xx in (3),
So we get ,
\Rightarrow f(1)2=3f(1)2f{{(1)}^{2}}=3f(1)-2
Simplifying we get,
f(1)23f(1)+2=0 f(1)22f(1)f(1)+2=0 f(1)(f(1)2)(f(1)2)=0 (f(1)1)(f(1)2)=0 \begin{aligned} & f{{(1)}^{2}}-3f(1)+2=0 \\\ & f{{(1)}^{2}}-2f(1)-f(1)+2=0 \\\ & f(1)(f(1)-2)-(f(1)-2)=0 \\\ & (f(1)-1)(f(1)-2)=0 \\\ \end{aligned}
So by solving we get two values forf(1)f(1),
So the values forf(1)f(1) are as follows,
f(1)=1,2f(1)=1,2…………… (4)
Let us take y=1y=1and substituting in (1),
So we get,
\Rightarrow f(x)f(1)=f(x)+f(1)+f(x)2f(x)f(1)=f(x)+f(1)+f(x)-2
\Rightarrow f(x)f(1)=2f(x)+f(1)2f(x)f(1)=2f(x)+f(1)-2
So rearranging the equation we get,
\Rightarrow (f(x)1)(f(1)2)=0(f(x)-1)(f(1)-2)=0
So here f(x)1f(x)\ne 1 and we can say thatf(1)=2f(1)=2…………..(5)
So from equation (4) and (5) we get to know that f(1)=2f(1)=2,
So substituting f(1)=2f(1)=2in (3) we get,
So we get,
\Rightarrow f(x)f(1x)=f(x)+f(1x)+22f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+2-2
\Rightarrow f(x)f(1x)=f(x)+f(1x)f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)
So f(x)f(x) is a polynomial function, let us consider it as,
\Rightarrow f(x)=±xn+1f(x)=\pm {{x}^{n}}+1
\Rightarrow f(4)=±4n+1=65f(4)=\pm {{4}^{n}}+1=65………….( Given in question that f(4)=65f(4)=65)
±4n=64 ±4n=43 \begin{aligned} & \pm {{4}^{n}}=64 \\\ & \pm {{4}^{n}}={{4}^{3}} \\\ \end{aligned}……………… (as we know43=64{{4}^{3}}=64so writing43{{4}^{3}}instead of6464)
So we get the value of nn as 33,
So we getf(x)f(x)as,
f(x)=x3+1f(x)={{x}^{3}}+1
So differentiating f(x)f(x) We get,
So we getf(x){{f}^{'}}(x)as,
f(x)=3x2{{f}^{'}}(x)=3{{x}^{2}}
So considering option (A),
f(x)=3x2{{f}^{'}}(x)=3{{x}^{2}}
So it has a polynomial of degree two. Option (A) is correct,
Now for option (B) it is mentioned thatf(x){{f}^{'}}(x) is Real ,
Sof(x)=3x2{{f}^{'}}(x)=3{{x}^{2}} so it is real, if we put any value we will get f(x){{f}^{'}}(x)as real.
So option (B) is correct.
Now considering Option (C) We get
xf(x)=3[f(x)1]x{{f}^{'}}(x)=3\left[ f(x)-1 \right]
Let us take x=1x=1
We get LHS==RHS
Option (C) is also correct.
For Option (D) it is given thatf(1)=3{{f}^{'}}(-1)=3
So we have foundf(x){{f}^{'}}(x)above
Sof(x)=3x2{{f}^{'}}(x)=3{{x}^{2}}
So Substituting x=1x=-1 inf(x){{f}^{'}}(x) We get,
f(1)=3{{f}^{'}}(-1)=3
Hence Option (D) is also correct.
So here all options are correct.
Option (A), (B), (C) and (D) are correct.

Note: While solving be careful of what you are supposed to substitute. Also don’t jumble yourself and use proper signs and assumptions. Use the polynomial as given in question. Use proper substitution as we had used y=1xy=\dfrac{1}{x}. So be careful about solving all the options and proving it right or wrong. You should not make a mistake at simplifying this onef(x)=±xn+1f(x)=\pm {{x}^{n}}+1.