Solveeit Logo

Question

Question: Let f(x) be a polynomial of degree 4 having extreme values at x=1 and x=2. If \(\displaystyle \lim...

Let f(x) be a polynomial of degree 4 having extreme values at x=1 and x=2.
If limx0(1+f(x)x2)=3\displaystyle \lim_{x \to 0}\left( 1+\dfrac{f\left( x \right)}{{{x}^{2}}} \right)=3 , then f(2) is equal to
(a) -8
(b) -4
(c) 0
(d) 4

Explanation

Solution

Let the polynomial be ax4+bx3+cx2+dx+e=0a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0 . Use the point that the extremums of the polynomial are at x=2 and x=1, which implies f(1)=0 and f(2)=0f'\left( 1 \right)=\text{0 and }f'\left( 2 \right)=0 . Also, use the condition limx0(1+f(x)x2)=3\displaystyle \lim_{x \to 0} \left( 1+\dfrac{f\left( x \right)}{{{x}^{2}}} \right)=3 to get the value of a, b, c, d and e. Remember, that a number divided by 0 is finite and defined if and only if the number is also zero.

Complete step-by-step answer:
Let us start the solution to the above question by letting the four degree polynomial to be ax4+bx3+cx2+dx+e=0a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0 .
It is given that limx0(1+f(x)x2)=3\displaystyle \lim_{x \to 0}\left( 1+\dfrac{f\left( x \right)}{{{x}^{2}}} \right)=3 . So, if we substitute the polynomial, we get
limx0(1+ax4+bx3+cx2+dx+ex2)=3\displaystyle \lim_{x \to 0}\left( 1+\dfrac{a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e}{{{x}^{2}}} \right)=3
limx0(1+ax2+bx+c+dx+ex2)=3\Rightarrow \displaystyle \lim_{x \to 0}\left( 1+a{{x}^{2}}+bx+c+\dfrac{d}{x}+\dfrac{e}{{{x}^{2}}} \right)=3
Now, we know that a number divided by 0 is finite and defined if and only if the number is also zero. So, d=e=0. Therefore, our equation is:
limx0(1+ax2+bx+c)=3\displaystyle \lim_{x \to 0}\left( 1+a{{x}^{2}}+bx+c \right)=3
Now, if we put the limit, i.e., x=0, we get
1+a×02+b×0+c=31+a\times {{0}^{2}}+b\times 0+c=3
1+c=3\Rightarrow 1+c=3
c=2\Rightarrow c=2
So, we can say f(x)=ax4+bx3+2x2f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+2{{x}^{2}} . If we differentiate f(x) using the formula dxndx=nxn1\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}} , we get
f(x)=4ax3+3bx2+4xf'\left( x \right)=4a{{x}^{3}}+3b{{x}^{2}}+4x
As it is given that that the extremums of the polynomial are at x=2 and x=1, we can say that f(1)=0 and f(2)=0f'\left( 1 \right)=\text{0 and }f'\left( 2 \right)=0 .
f(1)=0f'\left( 1 \right)=0
4a×13+3b×12+4×1=0\Rightarrow 4a\times {{1}^{3}}+3b\times {{1}^{2}}+4\times 1=0
4a+3b+4=0.............(i)\Rightarrow 4a+3b+4=0.............(i)
f(2)=0f'\left( 2 \right)=0
4a×23+3b×22+4×2=0\Rightarrow 4a\times {{2}^{3}}+3b\times {{2}^{2}}+4\times 2=0
32a+12b+8=0...........(ii)\Rightarrow 32a+12b+8=0...........(ii)
Now, we will multiply equation (i) by 4 and subtract it from equation (ii). On doing so, we get
32a+12b+84(4a+3b+4)=032a+12b+8-4\left( 4a+3b+4 \right)=0
32a+12b+816a12b16=0\Rightarrow 32a+12b+8-16a-12b-16=0
16a8=0\Rightarrow 16a-8=0
16a=8\Rightarrow 16a=8
a=12\Rightarrow a=\dfrac{1}{2}
Now, if we put this value of a in equation (i), we get
4×12+3b+4=04\times \dfrac{1}{2}+3b+4=0
3b+6=0\Rightarrow 3b+6=0
b=2\Rightarrow b=-2
So, we can say that the polynomial is f(x)=12×x42x3+2x2f\left( x \right)=\dfrac{1}{2}\times {{x}^{4}}-2{{x}^{3}}+2{{x}^{2}} . So, if we put x=2 in this function, we get
f(2)=12×(2)42(2)3+2(2)2=816+8=0f\left( 2 \right)=\dfrac{1}{2}\times {{\left( 2 \right)}^{4}}-2{{\left( 2 \right)}^{3}}+2{{\left( 2 \right)}^{2}}=8-16+8=0

So, the correct answer is “Option C”.

Note: It is not always necessary that you can find out the polynomial using the method but it is a sure thing that all the data required will be given by using the above interpretations only. Also, it is not a necessary thing that you should know the polynomial, you might reach the answer without knowing the polynomial as well, depending on what is asked.