Solveeit Logo

Question

Mathematics Question on Sequence and series

Let f(x)f(x) be a function such that f(x+y)=f(x)f(y)f(x+y)=f(x) \cdot f(y) for all x,yx, y \in N If f(1)=3f(1)=3 and k=1nf(k)=3279\displaystyle\sum_{k=1}^n f(k)=3279, then the value of nn is

A

8

B

6

C

7

D

9

Answer

7

Explanation

Solution

The correct answer is (C) : 7
f(x+y)=f(x)⋅f(y)∀x,y∈N,f(1)=3
f(2)=f2(1)=32
f(3)=f(1)f(2)=33
f(4)=34
f(k)=3k
k=1∑n​f(k)=3279
f(1)+f(2)+f(3)+………+f(k)=3279
3+32+33+………3k=3279
3−13(3k−1)​=3279
23k−1​=1093
3k−1=2186
3k=2187
k=7