Solveeit Logo

Question

Mathematics Question on Differential equations

Let f(x) be a continuously differentiable function on the interval (0, ∞) such that f(1) = 2 and
limtxt10f(x)x10f(t)t9x9=1\lim\limits_{t→x}\frac{t^{10}f(x)-x^{10}f(t)}{t^9-x^9}=1
for each x > 0. Then, for all x > 0, f(x) is equal to

A

3111x911x10\frac{31}{11x}-\frac{9}{11}x^{10}

B

911x+1311x10\frac{9}{11x}+\frac{13}{11}x^{10}

C

911x+3111x10\frac{-9}{11x}+\frac{31}{11}x^{10}

D

1311x+911x10\frac{13}{11x}+\frac{9}{11}x^{10}

Answer

911x+1311x10\frac{9}{11x}+\frac{13}{11}x^{10}

Explanation

Solution

The correct option is (B):911x+1311x10\frac{9}{11x}+\frac{13}{11}x^{10}.