Solveeit Logo

Question

Mathematics Question on Sequence and series

Let f(x)=ax2+bx+c,a0f (x) = ax^2 + bx + c, a \ne 0 and Δ=b24ac.\Delta =b^2 -4ac. If a+β,a+ \beta, a2+β2a^2+ \beta^2 and a3+β3a^3+ \beta^3 are in GP, then

A

Δ=0\Delta = 0

B

bΔ=0b\Delta = 0

C

cΔ=0c\Delta = 0

D

bc0 bc \ne 0

Answer

cΔ=0c\Delta = 0

Explanation

Solution

Since, (a+β),(a2+β2),(a3+β3) (a+\beta) , (a^2+\beta^2), (a^3+\beta^3) are in GP
\Rightarrow \hspace20mm (a^2+\beta^2)^2 =(a+\beta) (a^3+\beta^3)
a4+β4+2a2β2=a4+β4+aβ3+βa3\Rightarrow \, \, \, \, \, \, \, a^4+\beta^4+2a^2 \beta^2 = a^4+ \beta^4 + a\beta^3+\beta a^3
aβ(a2+β22aβ)=0\Rightarrow \, \, \, \, a\beta (a^2 +\beta^2 - 2a\beta) = 0
\Rightarrow \hspace15mm \, \, \, a\beta (a-\beta)^2 = 0
\Rightarrow \hspace30mm \, \, a\beta = 0 \, \, \, \, \, or \, \, \, \, \, a = \beta
\Rightarrow \hspace33mm \frac{c}{a} = 0 \, \, \, \, \, or \, \, \, \, \, \Delta = 0
\Rightarrow \hspace33mm c \Delta = 0 \, \, \, \, \,