Question
Mathematics Question on Sequence and series
Let f(x)=ax2+bx+c,a=0 and Δ=b2−4ac. If a+β, a2+β2 and a3+β3 are in GP, then
A
Δ=0
B
bΔ=0
C
cΔ=0
D
bc=0
Answer
cΔ=0
Explanation
Solution
Since, (a+β),(a2+β2),(a3+β3) are in GP
\Rightarrow \hspace20mm (a^2+\beta^2)^2 =(a+\beta) (a^3+\beta^3)
⇒a4+β4+2a2β2=a4+β4+aβ3+βa3
⇒aβ(a2+β2−2aβ)=0
\Rightarrow \hspace15mm \, \, \, a\beta (a-\beta)^2 = 0
\Rightarrow \hspace30mm \, \, a\beta = 0 \, \, \, \, \, or \, \, \, \, \, a = \beta
\Rightarrow \hspace33mm \frac{c}{a} = 0 \, \, \, \, \, or \, \, \, \, \, \Delta = 0
\Rightarrow \hspace33mm c \Delta = 0 \, \, \, \, \,