Question
Mathematics Question on Applications of Derivatives
Let f(x)=αsin23x. If f′(π/12)=−3 ,then the value of α is_____.
A
−1
B
π
C
−π
D
0
E
1
Answer
−1
Explanation
Solution
Given that
f(x)=∝sin23x and f′(12π)=−3
Then ,
f′(x)=2×3∝sin3x.cos3x
f′(x)=6∝sin3x.cos3x
Now, comparing the like terms we can write,
x=12π
So,
$ f'(\dfrac{\pi}{12})=6∝sin3(\dfrac{\pi}{12}).cos3(\dfrac{\pi}{12})$
$ ⇒ -3=6×∝×\dfrac{1}{√2}×\dfrac{1}{√2}$
$ ⇒ -3=6×∝×\dfrac{1}{2}$
$⇒ ∝=-1$