Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Let f(x)=αsin23x.f(x)=αsin^{2}3x. If f(π/12)=3f'(π/12)=-3 ,then the value of αα is_____.

A

1-1

B

π\pi

C

π-\pi

D

00

E

11

Answer

1-1

Explanation

Solution

Given that

f(x)=sin23xf(x)=∝sin^{2}3x and f(π12)=3 f'(\dfrac{\pi}{12})=-3

Then ,

f(x)=2×3sin3x.cos3xf'(x)=2×3∝sin3x.cos3x

f(x)=6sin3x.cos3xf'(x)=6∝sin3x.cos3x

Now, comparing the like terms we can write,

x=π12x=\dfrac{\pi}{12}

So,

 $    f'(\dfrac{\pi}{12})=6∝sin3(\dfrac{\pi}{12}).cos3(\dfrac{\pi}{12})$

                   $ ⇒       -3=6×∝×\dfrac{1}{√2}×\dfrac{1}{√2}$

                   $  ⇒           -3=6×∝×\dfrac{1}{2}$

                   $⇒ ∝=-1$