Solveeit Logo

Question

Mathematics Question on integral

Let f(x)f (x) and g(x)g(x) be differentiable functions on (0, 2] such that f"(x)g"(x)=0,f(1)=2g(1)=4,f(2)=3g(2)=9.f"(x) - g"(x) = 0, f'(1) = 2g'(1) = 4, f(2) = 3g(2) = 9. Then f(x)g(x)f (x)- g(x) at x=3/2 x = 3/2 is

A

0

B

2

C

10

D

5

Answer

5

Explanation

Solution

f(x)g(x)=0f ''(x) - g''(x) = 0
Integrating, we get
?? f(x)g(x)=cf'(x) - g'(x) = c ??? ....(i)
Put x=1x = 1
??f(1)=g(1)=cf'(1) = g'(1) = c
c=2\Rightarrow \:\:\: c = 2?????[f(1)=2g(1)=4][ \therefore \:\: f'(1) = 2g' (1) = 4]
Substituting the value of c in (i), we get
??f(x)g(x)=2f'(x) - g'(x) = 2 ??? ......(ii)
Integrating (ii), we get
??f(x)g(x)=2x+cf(x) - g(x) = 2x + c' .......(ii)
\Rightarrow Put x=2x = 2
?? f(2)g(2)=4+cf(2) -g(2) = 4 + c'
c=2\Rightarrow \:\: c' = 2 ? ???[f(2)=2g(2)=9][ \therefore \:\: f(2) = 2g (2) = 9]
Substituting cc' in (iii)
????f(x)g(x)=2x+2f(x)-g(x) = 2x + 2
f(32)g(32)=2×32+2=5\Rightarrow \:\: f\left(\frac{3}{2}\right) -g\left(\frac{3}{2}\right) =2 \times\frac{3}{2} + 2 = 5