Solveeit Logo

Question

Mathematics Question on Functions

Let f(x)f(x)={-5,x0x5,x>05,x≤0 x-5,x>0 and g(x)=If(x)+2f(IxI)g(x)=If(x)+2f(IxI).Then g(2)g(-2) will be

A

15-15

B

11

C

00

D

11

E

11-11

Answer

11-11

Explanation

Solution

Given that

f(x)f(x)={5,x5,x0x>0−5,x−5,​x≤0x>0​

g(x)=f(x)+2f(x)g(x)=f(x)+2f(∣x∣)

now g(2)g(−2) can be found by

Step 1: Since 2≤0, we use the first part of the definition of f(x),f(x), which gives us f(2)=5f(−2)=−5.

Step 2: Since 2=2∣−2∣=2 and 2>0,2>0, we use the second part of the definition of f(x), which gives us f(2)=25=25=3f(∣−2∣)=∣2∣−5=2−5=−3.

Step 3: Using the formula g(x)=f(x)+2f(x)g(x)=f(x)+2f(∣x∣), we have:g(2)=f(2)+2f(2)=(5)+2(3)=56=11. g(−2)=f(−2)+2f(∣−2∣)=(−5)+2(−3)=−5−6=−11.

Therefore, the value of g(2)is 11g(−2)\text{is } -11. (_Ans.)