Question
Mathematics Question on Maxima and Minima
Let f(x)=4cos3x+33cos2x−10. The number of points of local maxima of f in interval (0,2π) is:
A
1
B
2
C
3
D
4
Answer
2
Explanation
Solution
The given function is:
f(x)=4cos3(x)+33cos2(x)−10,x∈(0,2π).
Step 1: Taking the derivative:
f′(x)=12cos2(x)(−sin(x))+33[2cos(x)(−sin(x))], f′(x)=−6sin(x)cos(x)[2cos(x)+3].
Step 2: Critical points occur when:
sin(x)=0or2cos(x)+3=0.
Step 3: Solving these equations:
sin(x)=0⟹x=0,π,2π, cos(x)=−23⟹x=65π,67π.
Step 4: Checking the interval (0,2π):
The local maxima occur at: x=65π,67π.
Final Answer:
2.