Solveeit Logo

Question

Mathematics Question on Maxima and Minima

Let f(x)=4cos3x+33cos2x10f(x) = 4\cos^3 x + 3\sqrt{3} \cos^2 x - 10. The number of points of local maxima of ff in interval (0,2π)(0, 2\pi) is:

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

The given function is:

f(x)=4cos3(x)+33cos2(x)10,x(0,2π).f(x) = 4 \cos^3(x) + 3\sqrt{3}\cos^2(x) - 10, \quad x \in (0, 2\pi).

Step 1: Taking the derivative:

f(x)=12cos2(x)(sin(x))+33[2cos(x)(sin(x))],f'(x) = 12 \cos^2(x)(- \sin(x)) + 3\sqrt{3}[2\cos(x)(- \sin(x))], f(x)=6sin(x)cos(x)[2cos(x)+3].f'(x) = -6\sin(x)\cos(x)[2\cos(x) + \sqrt{3}].

Step 2: Critical points occur when:

sin(x)=0or2cos(x)+3=0.\sin(x) = 0 \quad \text{or} \quad 2\cos(x) + \sqrt{3} = 0.

Step 3: Solving these equations:

sin(x)=0    x=0,π,2π,\sin(x) = 0 \implies x = 0, \pi, 2\pi, cos(x)=32    x=5π6,7π6.\cos(x) = -\frac{\sqrt{3}}{2} \implies x = \frac{5\pi}{6}, \frac{7\pi}{6}.

Step 4: Checking the interval (0,2π)(0, 2\pi):

The local maxima occur at: x=5π6,7π6.x = \frac{5\pi}{6}, \frac{7\pi}{6}.

Final Answer:

2.\text{2.}