Solveeit Logo

Question

Mathematics Question on sets

Let
f(x)=2x2x1 and S=nZ:f(n)800f(x) = 2x^2 - x - 1\ and\ S = \\{ n \in \mathbb{Z} : |f(n)| \leq 800 \\}
Then, the value of ∑n∈S f(n) is equal to ________.

Answer

The correct answer is 10620
f(n)800∵ |f(n)|≤800
8002n2n1800⇒ -800 ≤ 2n^2-n-1≤800
2n2n8010⇒ 2n^2-n-801≤0
n[6409+14,6409+14]∴ n∈[\frac{-\sqrt{6409}+1}{4}, \frac{\sqrt{6409}+1}{4}] and nzn∈z
n=19,18,17,.....,19,20.∴ n = -19, -18, -17,.....,19,20.
(2x2x1)=2x2x1∴ ∑(2x^2-x-1) = 2∑x^2-∑x-∑1
=2.2.(12+22+...+192)+2.2022040= 2.2.(1^2+2^2+...+19^2)+2.20^2-20-40
= 10620