Question
Mathematics Question on Definite Integral
Let
f(x)=2+∣x∣−∣x−1∣+∣x+1∣,x∈R.
Consider f′(−23)+f′(−21)+f′(21)+f′(23)=2
((S2):∫−22f(x)dx=12
Then,
A
Both (S1) and (S2) are correct
B
Both (S1) and (S2) are wrong
C
Only (S1) is correct
D
Only (S2) is correct
Answer
Only (S2) is correct
Explanation
Solution
The correct answer is (D) : Only (S2) is correct
f(x)=2+∣x∣−∣x−1∣+∣x+1∣,x∈R
∴f(x)=⎩⎨⎧−x x+2 3x+2 x+4 x<−1−1≤x<00≤x<1x≥1
∴f′(−23)+f′(−21)+f′(21)+f′(23)
=−1+1+3+1=4
and ∫−22f(x)dx=∫−2−1f(x)dx+∫−10f(x)dx+∫01f(x)dx+∫12f(x)dx
=[−2x2]−2−1+[2(x+2)2]−10+[6(3x+2)2]01+[2(x+4)2]12
=23+23+27+211
=224=12
∴ Only (S2) is correct