Solveeit Logo

Question

Mathematics Question on composite of functions

Let f(x)=2x+tan1xf(x)=2 x+\tan ^{-1} x and g(x)=loge(1+x2+x),x[0,3]g(x)=\log _e\left(\sqrt{1+x^2}+x\right), x \in[0,3] Then

A

minf(x)=1+maxg(x)\min f^{\prime}(x)=1+\max g^{\prime}(x)

B

there exist 0<x1<x2<30 < x_1 < x_2 < 3 such that f(x)<g(x),x(x1,x2)f(x) < g(x), \forall x \in\left(x_1, x_2\right)

C

maxf(x)>maxg(x)\max f(x)>\max g(x)

D

there exists x^[0,3]\hat{x} \in[0,3] such that f(x^)<g(x^)f^{\prime}(\hat{x}) < g^{\prime}(\hat{x})

Answer

maxf(x)>maxg(x)\max f(x)>\max g(x)

Explanation

Solution

The correct answer is (C) : maxf(x)>maxg(x)\max f(x)>\max g(x)
f(x)=2+11+x2, g(x)=11+x2f'(x)=2+\frac{1}{1+x^2},\ g'(x)=\frac{1}{\sqrt{1+x^2}}
Both does not have critical values
f(0)=0,f(3)=6+tan1(3)f(0)=0,f(3)=6+\tan^{-1}(3)
g(0)=0,g(3)=log(3+10)g(0)=0,g(3)=\log(3+\sqrt{10})
Let h(x) = f(x) - g(x)
h(x)>0x(0,3)h'(x) > 0∀x∈(0,3)
∴ h(x) is increasing function