Question
Mathematics Question on composite of functions
Let f(x)=2x+tan−1x and g(x)=loge(1+x2+x),x∈[0,3] Then
A
minf′(x)=1+maxg′(x)
B
there exist 0<x1<x2<3 such that f(x)<g(x),∀x∈(x1,x2)
C
maxf(x)>maxg(x)
D
there exists x^∈[0,3] such that f′(x^)<g′(x^)
Answer
maxf(x)>maxg(x)
Explanation
Solution
The correct answer is (C) : maxf(x)>maxg(x)
f′(x)=2+1+x21, g′(x)=1+x21
Both does not have critical values
f(0)=0,f(3)=6+tan−1(3)
g(0)=0,g(3)=log(3+10)
Let h(x) = f(x) - g(x)
h′(x)>0∀x∈(0,3)
∴ h(x) is increasing function