Solveeit Logo

Question

Question: Let f "(x) \> 0 ∀ x ∈ R and g(x) = f(2 – x) + f(4 + x). Then g(x) is increasing in...

Let f "(x) > 0 ∀ x ∈ R and g(x) = f(2 – x) + f(4 + x). Then g(x) is increasing in

A

(-∞, -1)

B

(-∞, 0)

C

(-1, ∞)

D

None

Answer

(-1, ∞)

Explanation

Solution

f "(x) > 0 ∀ x ∈ R ⇒ f '(x) is increasing ∀ x ∈ R.

g'(x) = −f '(2 − x) + f '(4 + x). If g'(x) > 0

⇒ f '(4 + x) > f'(2 - x)

⇒ 4 + x > 2 – x

⇒ x > −1