Solveeit Logo

Question

Question: Let f (x) > 0 for all x and f’ (x) exists for all x. if f is the inverse function of h and \[\left( ...

Let f (x) > 0 for all x and f’ (x) exists for all x. if f is the inverse function of h and (h(x)=11+logx)\left( {h'\left( x \right) = \dfrac{1}{{1 + \log x}}} \right), then f’ (x) will be ?
(a)1+logf(x)\left( a \right)1 + \log f\left( x \right)
(b)1+f(x)\left( b \right)1 + f\left( x \right)
(c)1logf(x)\left( c \right)1 - \log f\left( x \right)
(d)logf(x)\left( d \right)\log f\left( x \right)

Explanation

Solution

In this particular question use the concept that inverse function is a function that reverses another function so if f is the inverse function of h, then h (f (x)) = x, then differentiate both sides w.r.t. x to calculate the value of f’ (x) in terms of h’ (f (x)), so use these concepts to reach the solution of the question.

Complete step-by-step solution:
Given data: f (x) > 0 for all x and f’ (x) exists for all x
And f is the inverse function of h,
Therefore h (f (x)) = x
Now differentiate the above equation w.r.t x we have,
ddx[h(f(x))]=ddxx\Rightarrow \dfrac{d}{{dx}}\left[ {h\left( {f\left( x \right)} \right)} \right] = \dfrac{d}{{dx}}x
Now as we know that ddxu(g(x))=ug(x)ddxg(x),ddxx=1\dfrac{d}{{dx}}u\left( {g\left( x \right)} \right) = u'g\left( x \right)\dfrac{d}{{dx}}g\left( x \right),\dfrac{d}{{dx}}x = 1, so use this property in the above equation we have,
h(f(x))ddxf(x)=1\Rightarrow h'\left( {f\left( x \right)} \right)\dfrac{d}{{dx}}f\left( x \right) = 1
h(f(x))f(x)=1\Rightarrow h'\left( {f\left( x \right)} \right)f'\left( x \right) = 1, [ddxf(x)=f(x)]\left[ {\because \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right)} \right]
f(x)=1h(f(x))\Rightarrow f'\left( x \right) = \dfrac{1}{{h'\left( {f\left( x \right)} \right)}}.................. (1)
Now it is given that (h(x)=11+logx)\left( {h'\left( x \right) = \dfrac{1}{{1 + \log x}}} \right)
So in the above equation substitute f (x) in place of x we have,
h(f(x))=11+logf(x)\Rightarrow h'\left( {f\left( x \right)} \right) = \dfrac{1}{{1 + \log f\left( x \right)}}
Now substitute this value in equation (1) we have,
f(x)=111+logf(x)=1+logf(x)\Rightarrow f'\left( x \right) = \dfrac{1}{{\dfrac{1}{{1 + \log f\left( x \right)}}}} = 1 + \log f\left( x \right)
So this is the required answer.

Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is given as ddxu(g(x))=ug(x)ddxg(x),ddxx=1\dfrac{d}{{dx}}u\left( {g\left( x \right)} \right) = u'g\left( x \right)\dfrac{d}{{dx}}g\left( x \right),\dfrac{d}{{dx}}x = 1, so differentiate the equation (1) by using this property and then substitute the values as above we will get the required value of f’(x).