Solveeit Logo

Question

Question: Let f <sup>¢</sup>(x) = \(\frac{1}{\sqrt{18 - x^{2}}}\), the value of \(\underset{x \rightarrow 3}{L...

Let f ¢(x) = 118x2\frac{1}{\sqrt{18 - x^{2}}}, the value of Limx3(f(x)f(3)x3)\underset{x \rightarrow 3}{Lim}\left( \frac{f(x) - f(3)}{x - 3} \right) is

A

0

B

–1/9

C

+1/3

D

1/9

Answer

+1/3

Explanation

Solution

Limx3f(x)f(3)x3\underset{x \rightarrow 3}{Lim}\frac{f(x) - f(3)}{x - 3} Apply L-Hospital rule

Limx3f(x)01\underset{x \rightarrow 3}{Lim}\frac{f'(x) - 0}{1} = f ¢(3) = 1189\frac{1}{\sqrt{18 - 9}} = 19\frac{1}{\sqrt{9}} = 13\frac{1}{3}