Solveeit Logo

Question

Question: Let f '(sinx) \< 0 and f'(sinx) \> 0 ∀ x ∈ \(\left( 0 , \frac { \pi } { 2 } \right)\) and g(x) = f(...

Let f '(sinx) < 0 and f'(sinx) > 0 ∀ x ∈ (0,π2)\left( 0 , \frac { \pi } { 2 } \right) and g(x) =

f(sinx) + f(cosx), then g(x) is decreasing in

A

(π4,π2)\left( \frac { \pi } { 4 } , \frac { \pi } { 2 } \right)

B

(0,π4)\left( 0 , \frac { \pi } { 4 } \right)

C

(0,π2)\left( 0 , \frac { \pi } { 2 } \right)

D

(π6,π2)\left( \frac { \pi } { 6 } , \frac { \pi } { 2 } \right)

Answer

(0,π4)\left( 0 , \frac { \pi } { 4 } \right)

Explanation

Solution

g'(x) = f(sinx).cosx − f '(cosx).sinx

⇒ g"(x) = −f '(cosx).sinx + cos2x. f ''(sinx) +

f "(cosx).sin2x − f '(cosx).cosx > 0 ∀ x ∈ (0, π/2)

⇒ g'(x) is increasing in (0, π/2). Also g'(π/4) = 0

⇒ g'(x) > 0 and g'(x) < 0

∀ x ∈ (0, π/4)