Question
Question: Let f '(sinx) \< 0 and f'(sinx) \> 0 ∀ x ∈ \(\left( 0 , \frac { \pi } { 2 } \right)\) and g(x) = f(...
Let f '(sinx) < 0 and f'(sinx) > 0 ∀ x ∈ (0,2π) and g(x) =
f(sinx) + f(cosx), then g(x) is decreasing in
A
(4π,2π)
B
(0,4π)
C
(0,2π)
D
(6π,2π)
Answer
(0,4π)
Explanation
Solution
g'(x) = f(sinx).cosx − f '(cosx).sinx
⇒ g"(x) = −f '(cosx).sinx + cos2x. f ''(sinx) +
f "(cosx).sin2x − f '(cosx).cosx > 0 ∀ x ∈ (0, π/2)
⇒ g'(x) is increasing in (0, π/2). Also g'(π/4) = 0
⇒ g'(x) > 0 and g'(x) < 0
∀ x ∈ (0, π/4)