Solveeit Logo

Question

Question: Let f: R→R be defined by $f(x) = \frac{x}{1+x^2}$, $x \in R$. Then the range of f is:...

Let f: R→R be defined by f(x)=x1+x2f(x) = \frac{x}{1+x^2}, xRx \in R. Then the range of f is:

A

R - [12,12][-\frac{1}{2}, \frac{1}{2}]

B

R-[-1,1]

C

[12,12][-\frac{1}{2}, \frac{1}{2}]

D

(-1, 1) - {0}

Answer

[12,12][-\frac{1}{2}, \frac{1}{2}]

Explanation

Solution

Let y=f(x)=x1+x2y = f(x) = \frac{x}{1+x^2}. Rearrange to get yx2x+y=0yx^2 - x + y = 0.

If y=0y=0, x=0x=0 is a real solution.

If y0y \neq 0, this is a quadratic in xx. For real solutions, the discriminant Δ=(1)24(y)(y)=14y2\Delta = (-1)^2 - 4(y)(y) = 1 - 4y^2 must be non-negative.

14y20    4y21    y214    12y121 - 4y^2 \ge 0 \implies 4y^2 \le 1 \implies y^2 \le \frac{1}{4} \implies -\frac{1}{2} \le y \le \frac{1}{2}.

Combining the cases, the range is [12,12][-\frac{1}{2}, \frac{1}{2}].