Solveeit Logo

Question

Question: Let \[f:R\to R,\text{ }g:R\to R\text{ and }h:R\to R\]be differentiable functions such that \[f\left(...

Let f:RR, g:RR and h:RRf:R\to R,\text{ }g:R\to R\text{ and }h:R\to Rbe differentiable functions such that f(x)=x3+3x+2, g(f(x))=x and h(g(g(x)))=x for all xR.f\left( x \right)={{x}^{3}}+3x+2,\text{ }g\left( f\left( x \right) \right)=x\text{ and }h\left( g\left( g\left( x \right) \right) \right)=x\text{ for all }x\in R.Then.
(a) g(2)=115{{g}^{'}}\left( 2 \right)=\dfrac{1}{15}
(b) h(1)=666{{h}^{'}}\left( 1 \right)=666
(c) h(0)=16h\left( 0 \right)=16
(d) h(g(3))=36h\left( g\left( 3 \right) \right)=36

Explanation

Solution

Hint: Differentiate g(f(x))=x and h(g(g(x)))=xg\left( f\left( x \right) \right)=x\text{ and }h\left( g\left( g\left( x \right) \right) \right)=xby replacing x by f(x)in h(g(g(x)))=xx\text{ by }f\left( x \right)\text{in }h\left( g\left( g\left( x \right) \right) \right)=xtwice.

We are given that f(x)=x3+3x+2, g(f(x))=x and h(g(g(x)))=x for xR.f\left( x \right)={{x}^{3}}+3x+2,\text{ }g\left( f\left( x \right) \right)=x\text{ and }h\left( g\left( g\left( x \right) \right) \right)=x\text{ for }x\in R.
Now, we have to find the values of g(2),h(1),h(0) and h(g(3)){{g}^{'}}\left( 2 \right),{{h}^{'}}\left( 1 \right),h\left( 0 \right)\text{ and }h\left( g\left( 3 \right) \right)
We are given that g(f(x))=xg\left( f\left( x \right) \right)=x
Now, we will differentiate both sides with respect to x.
Also we know that ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}
Also, by chain rule, if y=f(u) and u=g(x)y=f\left( u \right)\text{ and }u=g\left( x \right), then
dydx=dydu.dudx\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}
Therefore, we get g(f(x)).f(x)=1{{g}^{'}}\left( f\left( x \right) \right).{{f}^{'}}\left( x \right)=1
g(f(x))=1f(x)....(i){{g}^{'}}\left( f\left( x \right) \right)=\dfrac{1}{{{f}^{'}}\left( x \right)}....\left( i \right)
Also, f(x)=x3+3x+2f\left( x \right)={{x}^{3}}+3x+2
By differentiating both sides with respect to x,
We get, f(x)=3x2+3....(ii){{f}^{'}}\left( x \right)=3{{x}^{2}}+3....\left( ii \right)
Now, to get g(2)g'\left( 2 \right), we put f(x)=2f\left( x \right)=2in equation (i)
We get, g(2)=1f(x)....(iii){{g}^{'}}\left( 2 \right)=\dfrac{1}{{{f}^{'}}\left( x \right)}....\left( iii \right)
Now, for f(x)=2f\left( x \right)=2
That is x3+3x+2=2{{x}^{3}}+3x+2=2
We get, x3+3x=0{{x}^{3}}+3x=0
x(x2+3)=0x\left( {{x}^{2}}+3 \right)=0
As we know that x23{{x}^{2}}\ne -3, therefore we get x = 0
By putting x = 0 in equation (iii), we get
g(2)=1f(0){{g}^{'}}\left( 2 \right)=\dfrac{1}{{{f}^{'}}\left( 0 \right)}
To get f(0){{f}^{'}}\left( 0 \right), we put x = 0 in equation (ii)
We get f(0)=3{{f}^{'}}\left( 0 \right)=3
Therefore we get, g(2)=13{{g}^{'}}\left( 2 \right)=\dfrac{1}{3}
Now we are given that h(g(g(x)))=xh\left( g\left( g\left( x \right) \right) \right)=x
Here we will replace x by f(x)f\left( x \right),
So we get h(g(g(f(x))))=f(x)h\left( g\left( g\left( f\left( x \right) \right) \right) \right)=f\left( x \right)
We know that g(f(x))=xg\left( f\left( x \right) \right)=x
h(g(x))=f(x)....(iv)h\left( g\left( x \right) \right)=f\left( x \right)....\left( iv \right)
Now, again we will replace x by f(x)f\left( x \right).
So we get, h(g(f(x)))=f(f(x))h\left( g\left( f\left( x \right) \right) \right)=f\left( f\left( x \right) \right)
We know that g(f(x))=xg\left( f\left( x \right) \right)=x
So, we get h(x)=f(f(x))....(v)h\left( x \right)=f\left( f\left( x \right) \right)....\left( v \right)
Now by differentiating both sides,
And by chain rule, if y=f(u) and u=g(x)y=f\left( u \right)\text{ and }u=g\left( x \right)then
dydx=dydu.dudx\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}
So, we get h(x)=f(f(x)).f(x)....(vi){{h}^{'}}\left( x \right)={{f}^{'}}\left( f\left( x \right) \right).{{f}^{'}}\left( x \right)....\left( vi \right)
Now to get h(g(3))h\left( g\left( 3 \right) \right), we will first put x = 3 in equation (iv)
So we get h(g(3))=f(3)h\left( g\left( 3 \right) \right)=f\left( 3 \right)
Therefore, h(g(3))=(3)3+3(3)+2=38h\left( g\left( 3 \right) \right)={{\left( 3 \right)}^{3}}+3\left( 3 \right)+2=38
Now to get h(0)h\left( 0 \right), we will put x = 0 in equation (v)
We get h(0)=f(f(0))h\left( 0 \right)=f\left( f\left( 0 \right) \right)
h(0)=f((0)3+3(0)+2)\Rightarrow h\left( 0 \right)=f\left( {{\left( 0 \right)}^{3}}+3\left( 0 \right)+2 \right)
h(0)=f(2)\Rightarrow h\left( 0 \right)=f\left( 2 \right)
h(0)=(2)3+3(2)+2\Rightarrow h\left( 0 \right)={{\left( 2 \right)}^{3}}+3\left( 2 \right)+2
Therefore, we get h(0)=8+6+2=16h\left( 0 \right)=8+6+2=16
Now, to get h(1){{h}^{'}}\left( 1 \right), we will put x = 1 in equation (vi)
h(1)=f(f(1)).f(1){{h}^{'}}\left( 1 \right)={{f}^{'}}\left( f\left( 1 \right) \right).{{f}^{'}}\left( 1 \right)
=f((1)3+3(1)+2).f(1)={{f}^{'}}\left( {{\left( 1 \right)}^{3}}+3\left( 1 \right)+2 \right).{{f}^{'}}\left( 1 \right)
=f(6).f(1)={{f}^{'}}\left( 6 \right).{{f}^{'}}\left( 1 \right)
To get f(6){{f}^{'}}\left( 6 \right)and f(1){{f}^{'}}\left( 1 \right), we will put x = 6 and x = 1 in equation (ii)
We get, h(1)=[3(6)2+3].[3(1)2+3]{{h}^{'}}\left( 1 \right)=\left[ 3{{\left( 6 \right)}^{2}}+3 \right].\left[ 3{{\left( 1 \right)}^{2}}+3 \right]
=(3×36+3).(6)=\left( 3\times 36+3 \right).\left( 6 \right)
=(111).6=\left( 111 \right).6
=666=666
Therefore we get,

& \Rightarrow {{g}^{'}}\left( 2 \right)=\dfrac{1}{3} \\\ & \Rightarrow {{h}^{'}}\left( 1 \right)=666 \\\ & \Rightarrow h\left( 0 \right)=16 \\\ & \Rightarrow h\left( g\left( 3 \right) \right)=38 \\\ \end{aligned}$$ Hence option (b) and (c) are correct. Note: Students often write differentiation of $$g\left( f\left( x \right) \right)={{g}^{'}}f\left( x \right)$$and miss the differentiation of $$f\left( x \right)$$which is $${{f}^{'}}\left( x \right)$$. So they must keep in mind the chain rule and correct differentiation of $$g\left( f\left( x \right) \right)$$is $${{g}^{'}}f\left( x \right).{{f}^{'}}\left( x \right)$$and similar rules must be followed for all composite functions.