Question
Question: Let \(f:R \to R\) is a function satisfying the condition \(f(x + {y^3}) = f(x) + {[f(y)]^3}\) for al...
Let f:R→R is a function satisfying the condition f(x+y3)=f(x)+[f(y)]3 for all x,y∈R. If f′(0)⩾0 then find f(10).
Solution
Substitute the values of x,y as zero in the given equation to find the value of f(0). From this value, calculate the value of f′(0) using the formula of limits. Finally, find the value of f(x) from these values and substitute the value of x as 10 to find f(10).
Complete step by step answer:
It is given to us that f(x+y3)=f(x)+[f(x)]3 and f′(0)⩾0
In order to find the value of f(0) let us substitute x=0,y=0 in the given equation.
The equation now becomes f(0+0)=f(0)+[f(0)]3 which is f(0)=f(0)+f(0)
Therefore, the value of f(0) is zero. Now, let us calculate the value of f′(0)
f′(0)=h→0limhf(0+h)−f(0)=h→0limhf(h) since the value of f(0) is zero.
Let us assume that this equation is I and hence I=f′(0)
We can also write this value as
\Rightarrow I = f'(0) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + {{\left( {{h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}}} \right)}^3}) - f(0)}}{{{{({h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}})}^3}}}
Since the value of f(0) is zero, the above expression becomes
\Rightarrow I = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + {{\left( {{h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}}} \right)}^3})}}{{{{({h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}})}^3}}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{[f({h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}})]}^3}}}{{{{({h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}})}^3}}}
This expression can be written as
\Rightarrow I = \mathop {\lim }\limits_{h \to 0} {\left( {\dfrac{{f\left( {{h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}}} \right)}}{{\left( {{h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}}} \right)}}} \right)^3} = {I^3}
For I=I3 the possible values of I are −1,1,0 but it is already given to us that f′(0)⩾0 so the possible values become 0,1
In the same way we can calculate the value of f′(x)
⇒f′(x)=h→0limhf(x+h)−f(x) and we write this value as
\Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + {{\left( {{h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}}} \right)}^3}) - f(x)}}{{{{\left( {{h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}}} \right)}^3}}}
From the given equation,
\Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x) + {{[f\left( {{h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}}} \right)]}^3} - f(x)}}{{{{\left( {{h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}}} \right)}^3}}}
By solving, we get
\Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} {\left( {\dfrac{{f({h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}})}}{{{h^{{\raise0.7ex\hbox{1} \\!\mathord{\left/
{\vphantom {1 3}}\right.}
\\!\lower0.7ex\hbox{3}}}}}}} \right)^3} = {I^3} = {\left( {f'(0)} \right)^3}
We already know the possible values of I3 so now the possible values of f′(x) are 0,1.
If f′(x)=0, by integrating we get f(x)=c where c is the constant.
If f′(x)=1, by integrating we get f(x)=x+c
Since f(0)=0 the value of c would be zero.
Now, if we substitute x=10, f(10)=0 or f(10)=10
Therefore the value of f(10) is 0 or 10.
Note: It should be noted that since f′(0)⩾0, f′(0) could have multiple values so one should not make a mistake by considering only one value. Similarly when f′(x) is integrated, one should not forget to take the constant c into consideration.