Solveeit Logo

Question

Question: Let \(f:R \to R,g:R \to R{\text{ and }}h:R \to R\) be a differential function such that \(f\left( x ...

Let f:RR,g:RR and h:RRf:R \to R,g:R \to R{\text{ and }}h:R \to R be a differential function such that f(x)=x3+3x+2,g(f(x))=x and h(g(g(x)))=x for all xRf\left( x \right) = {x^3} + 3x + 2,g\left( {f\left( x \right)} \right) = x{\text{ and }}h\left( {g\left( {g\left( x \right)} \right)} \right) = x{\text{ for all }}x \in R . Then which of the following options is correct:
(A) g(2)=115g{'}\left( 2 \right) = \dfrac{1}{{15}}
(B) h(1)=666h{'}\left( 1 \right) = 666
(C) h(0)=16h\left( 0 \right) = 16
(D) h(g(3))=36h\left( {g\left( 3 \right)} \right) = 36

Explanation

Solution

Use the given information to evaluate the options g(2)g{'}\left( 2 \right) , h(1)h{'}\left( 1 \right) , h(0)h\left( 0 \right) and h(g(3))h\left( {g\left( 3 \right)} \right). For option (A), differentiate g(f(x))=xg\left( {f\left( x \right)} \right) = x using the chain rule and then find for what value of xx does f(x)=2f\left( x \right) = 2. For h(1)h{'}\left( 1 \right), differentiate h(g(g(x)))=xh\left( {g\left( {g\left( x \right)} \right)} \right) = x using the chain rule and substitute the value of each term separately. Compare all the values using options to determine the correct answer.

Complete step by step answer:
We were given with the function ff , defined as f(x)=x3+3x+2f\left( x \right) = {x^3} + 3x + 2 , and function gg where g(f(x))=xg\left( {f\left( x \right)} \right) = x and another function hh which has property h(g(g(x)))=xh\left( {g\left( {g\left( x \right)} \right)} \right) = x . With this given information we need to check which of the given options is correct.
Let’s first consider option (A).
Differentiating relation g(f(x))=xg\left( {f\left( x \right)} \right) = x with respect to xx using the chain rule, i.e. ddx[f(g(x))]=f(g(x))g(x)\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f{'}\left( {g\left( x \right)} \right)g{'}\left( x \right) , we get: g(f(x))×f(x)=d(x)dx=1g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = \dfrac{{d\left( x \right)}}{{dx}} = 1
Therefore, we get the equation g(f(x))×f(x)=1g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = 1 ……………. (1)
And f(x)f{'}\left( x \right) will be the first derivative of f(x)f\left( x \right) , i.e. f(x)=ddx(f(x))=ddx(x3+3x+2)=3x2+3f{'}\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {{x^3} + 3x + 2} \right) = 3{x^2} + 3
For x=0x = 0 , f(0)=03+3×0+2=2f\left( 0 \right) = {0^3} + 3 \times 0 + 2 = 2
Now, let’s put x=0x = 0in relation (1), this will give:
g(f(0))×f(0)=1\Rightarrow g{'}\left( {f\left( 0 \right)} \right) \times f{'}\left( 0 \right) = 1
Putting the value of f(x)f{'}\left( x \right) and f(0)f\left( 0 \right) , we get
g(2)×(3×0+3)=1g(2)=13\Rightarrow g{'}\left( 2 \right) \times \left( {3 \times 0 + 3} \right) = 1 \Rightarrow g{'}\left( 2 \right) = \dfrac{1}{3}
Let's put x=3x = 3 in f(x)f\left( x \right), we get: f(3)=33+3×3+2=38f\left( 3 \right) = {3^3} + 3 \times 3 + 2 = 38
So, we use this in g(f(x))=xg\left( {f\left( x \right)} \right) = xas follows:
g(f(3))=3g(38)=3\Rightarrow g\left( {f\left( 3 \right)} \right) = 3 \Rightarrow g\left( {38} \right) = 3
Now, we can use x=38x = 38 in h(g(g(x)))=xh\left( {g\left( {g\left( x \right)} \right)} \right) = x and we will get:
h(g(g(38)))=38h(g(3))=38\Rightarrow h\left( {g\left( {g\left( {38} \right)} \right)} \right) = 38 \Rightarrow h\left( {g\left( 3 \right)} \right) = 38
For x=2x = 2 in f(x)=x3+3x+2f\left( x \right) = {x^3} + 3x + 2, we get: f(2)=23+3×2+2=8+6+2=16f\left( 2 \right) = {2^3} + 3 \times 2 + 2 = 8 + 6 + 2 = 16
Now for x=2x = 2 in g(f(x))=xg\left( {f\left( x \right)} \right) = x , we get:
g(f(2))=2g(16)=2\Rightarrow g\left( {f\left( 2 \right)} \right) = 2 \Rightarrow g\left( {16} \right) = 2
Similarly, for x=0x = 0 in g(f(x))=xg\left( {f\left( x \right)} \right) = x , we get:
g(f(0))=0g(2)=0\Rightarrow g\left( {f\left( 0 \right)} \right) = 0 \Rightarrow g\left( 2 \right) = 0
So, let's use x=16x = 16 in the given expression h(g(g(x)))=xh\left( {g\left( {g\left( x \right)} \right)} \right) = x and using the above-found values in it, this will result in:
h(g(g(16)))=16h(g(2))=16h(0)=16\Rightarrow h\left( {g\left( {g\left( {16} \right)} \right)} \right) = 16 \Rightarrow h\left( {g\left( 2 \right)} \right) = 16 \Rightarrow h\left( 0 \right) = 16
Now, let's differentiate the equation h(g(g(x)))=xh\left( {g\left( {g\left( x \right)} \right)} \right) = xusing the chain rule
ddx(h(g(g(x))))=ddx(x)h(g(g(x)))×g(g(x))×g(x)=1\dfrac{d}{{dx}}\left( {h\left( {g\left( {g\left( x \right)} \right)} \right)} \right) = \dfrac{d}{{dx}}\left( x \right) \Rightarrow h{'}\left( {g\left( {g\left( x \right)} \right)} \right) \times g{'}\left( {g\left( x \right)} \right) \times g{'}\left( x \right) = 1 ………. (2)
We need the value of h(1)h{'}\left( 1 \right) , so for that, we need to make h(g(g(x)))=h(1)h{'}\left( {g\left( {g\left( x \right)} \right)} \right) = h{'}\left( 1 \right) , i.e. g(g(x))=1g\left( {g\left( x \right)} \right) = 1
For x=1x = 1 in g(f(x))=xg\left( {f\left( x \right)} \right) = x, we get: g(f(1))=1g(13+3×1+2)=1g(6)=1g\left( {f\left( 1 \right)} \right) = 1 \Rightarrow g\left( {{1^3} + 3 \times 1 + 2} \right) = 1 \Rightarrow g\left( 6 \right) = 1
Now for x=6x = 6 in g(f(x))=xg\left( {f\left( x \right)} \right) = x, we get: g(f(6))=6g(63+3×6+2)=6g(216+18+2)=6g(236)=6g\left( {f\left( 6 \right)} \right) = 6 \Rightarrow g\left( {{6^3} + 3 \times 6 + 2} \right) = 6 \Rightarrow g\left( {216 + 18 + 2} \right) = 6 \Rightarrow g\left( {236} \right) = 6
So, for x=236x = 236 the relation (2) will become:
h(g(g(236)))×g(g(236))×g(236)=1h(g(6))×g(6)×g(236)=1h(1)=1g(6)×g(236)\Rightarrow h{'}\left( {g\left( {g\left( {236} \right)} \right)} \right) \times g{'}\left( {g\left( {236} \right)} \right) \times g{'}\left( {236} \right) = 1 \Rightarrow h{'}\left( {g\left( 6 \right)} \right) \times g{'}\left( 6 \right) \times g{'}\left( {236} \right) = 1 \Rightarrow h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}}Therefore, we get: h(1)=1g(6)×g(236)h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}} ………. (3)
From relation (1), we can put x=6 and x=236x = 6{\text{ and }}x = 236
g(f(x))×f(x)=1g(f(x))=1f(x)\Rightarrow g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = 1 \Rightarrow g{'}\left( {f\left( x \right)} \right) = \dfrac{1}{{f{'}\left( x \right)}}
For x=1x = 1 , we get: g(f(1))=1f(1)g(1+3+2)=1(3×1+3)g(6)=16g{'}\left( {f\left( 1 \right)} \right) = \dfrac{1}{{f{'}\left( 1 \right)}} \Rightarrow g{'}\left( {1 + 3 + 2} \right) = \dfrac{1}{{\left( {3 \times 1 + 3} \right)}} \Rightarrow g{'}\left( 6 \right) = \dfrac{1}{6}
For x=6x = 6 , we get: g(f(6))=1f(6)g(236)=13×62+3=1108+3=1111g{'}\left( {f\left( 6 \right)} \right) = \dfrac{1}{{f{'}\left( 6 \right)}} \Rightarrow g{'}\left( {236} \right) = \dfrac{1}{{3 \times {6^2} + 3}} = \dfrac{1}{{108 + 3}} = \dfrac{1}{{111}}
Now, let's substitute these values in the relation (3)
h(1)=1g(6)×g(236)=116×1111=11666=666\Rightarrow h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}} = \dfrac{1}{{\dfrac{1}{6} \times \dfrac{1}{{111}}}} = \dfrac{1}{{\dfrac{1}{{666}}}} = 666
Hence, we get the results: g(2)=13g{'}\left( 2 \right) = \dfrac{1}{3} , h(1)=666h{'}\left( 1 \right) = 666 , h(0)=16h\left( 0 \right) = 16 and h(g(3))=38h\left( {g\left( 3 \right)} \right) = 38

Therefore, only the option (B) and (C) are correct.

Note:
Analyse the given information and go step by step while proceeding through the solution. Notice that the use of the chain rule of differentiation is a crucial part of the solution to this problem. Be careful with the use of braces while solving to avoid any confusion. In questions like these, there{'}s no choice other than checking for each option one by one.