Solveeit Logo

Question

Mathematics Question on Maxima and Minima

Let f : R /to/to R be given by f(x) = (x - 1)(x - 2)(x - 5). Define F(x)=0xf(t)dt,x>0.F\left(x\right) = \int\limits^{x}_{0} f\left(t\right) dt, x > 0. Then which of the following options is/are correct?

A

F has a local minimum at x = 1

B

F has a local maximum at x = 2

C

F has two local maxima and one local minimum in (0, \infty)

D

F(x)F\left(x\right) \ne 0 for all x(0,5)x \in \left(0,5\right)

Answer

F(x)F\left(x\right) \ne 0 for all x(0,5)x \in \left(0,5\right)

Explanation

Solution

The correct option is(D): F(x)F\left(x\right) \ne 0 for all x(0,5)x \in \left(0,5\right).

f(x)=(x1)(x2)(x5)f(x) = (x - 1) (x - 2) (x - 5)
f(x)=f(x) = 0x\int\limits^{{x}}_{{0}} f(t)dt,x>0f(t) dt,x > 0
F(x)=f(x)=(x1)(x2)(x5),x>0F'\left(x\right)=f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-5\right), x>0
clearly F(x) has local minimum at x = 1,5
F(x)F(x) has local maximum at x=2x = 2
f(x)=x38x2+17x10f\left(x\right)=x^{3}-8x^{2}+17x-10
\Rightarrow F\left(x\right)=$$\int\limits^{{x}}_{{0}}$$\left(t^{3}-8t^{2}+17t-10\right)dt
F(x)=x448x33+17x2210xF\left(x\right)=\frac{x^{4}}{4}-\frac{8x^{3}}{3}+\frac{17x^{2}}{2}-10x
from the graph of y=F(x)y = F(x), clearly F(x)0x(0.5)F\left(x\right)\ne0 \forall x\,\in \left(0.5\right)