Question
Mathematics Question on Application of derivatives
Let f:R→R be a positive increasing function with x→∞limf(x)f(3x)=1 Then x→∞limf(x)f(2x)=
A
32
B
23
C
3
D
1
Answer
1
Explanation
Solution
f(x) is a positive increasing function. ∴0<f(x)<f(2x)<f(3x) ⇒0<1<f(x)f(2x)<f(x)f(3x) ⇒x→∞lim1≤x→∞limf(x)f(2x)≤x→∞limf(x)f(3x) By Sandwich Theorem. ⇒x→∞limf(x)f(2x)=1