Solveeit Logo

Question

Mathematics Question on Application of derivatives

Let f:RRf : R \to R be a positive increasing function with limxf(3x)f(x)=1\displaystyle \lim_{x \to \infty} \frac{f\left(3x\right)}{f\left(x\right)} =1 Then limxf(2x)f(x)=\displaystyle \lim_{x \to\infty} \frac{f\left(2x\right)}{f\left(x\right)} =

A

23\frac{2}{3}

B

32\frac{3}{2}

C

33

D

11

Answer

11

Explanation

Solution

f(x) is a positive increasing function. 0<f(x)<f(2x)<f(3x)\therefore \, 0 < f(x) < f(2x) < f(3x) 0<1<f(2x)f(x)<f(3x)f(x)\Rightarrow \, 0 < 1 < \frac{f(2x)}{f(x)} < \frac{f(3x)}{f(x)} limx1limxf(2x)f(x)limxf(3x)f(x)\Rightarrow \displaystyle \lim _{x \to \infty } 1\le \displaystyle \lim_{x \to \infty} \frac{f\left(2x\right)}{f\left(x\right)} \le \displaystyle \lim_{x \to\infty} \frac{f\left(3x\right)}{f\left(x\right)} By Sandwich Theorem. limxf(2x)f(x)=1\Rightarrow \displaystyle \lim _{x \to \infty } \frac{f\left(2x\right)}{f\left(x\right)}=1