Question
Mathematics Question on Differentiability
Let f:R→R be a function such that the third derivative of f(x) vanishes for all x. If f(0)=1,f′(2)=4 and f′′(1)=2, then f(x) equals to
A
x2+1
B
x2+2x+1
C
4x+1
D
x2−2x+1
Answer
x2+1
Explanation
Solution
The correct answer is A:x2+1
Let f(x)=ax2+bx+c ..(i)
Also, given f(0)=1
⇒ 1=a(0)2+b(0)+c
⇒ c=1 ..(ii)
and f′(2)=4
on differentiating E (i), w. r. t. x, we get
f′(x)=2ax+b ..(iii)
⇒ f′(2)=2a(2)+b
⇒ 4=4a+b ..(iv)
Again, differentiating E (iii) 0, we get
f′′(x)=2a But f′′(1)=2 (given)
∴ f′′(1)=2a
⇒ 2=2a
⇒ a=1
On putting a=1 in E (iv), we get
4=4+b
⇒ b=0
On putting a=1,b=0 and c=1
in E (i), we get
f(x)=x2+1