Solveeit Logo

Question

Mathematics Question on Differentiability

Let f:RRf:R\to R be a function such that the third derivative of f(x)f(x) vanishes for all xx. If f(0)=1,f(2)=4f(0)=1,\,f'(2)=4 and f(1)=2,f''(1)=2, then f(x)f(x) equals to

A

x2+1{{x}^{2}}+1

B

x2+2x+1{{x}^{2}}+2x+1

C

4x+14x+1

D

x22x+1{{x}^{2}}-2x+1

Answer

x2+1{{x}^{2}}+1

Explanation

Solution

The correct answer is A:x2+1x^2+1
Let f(x)=ax2+bx+cf(x)=a{{x}^{2}}+bx+c ..(i)
Also, given f(0)=1f(0)=1
\Rightarrow 1=a(0)2+b(0)+c1=a\,{{(0)}^{2}}+b(0)+c
\Rightarrow c=1c=1 ..(ii)
and f(2)=4f'(2)=4
on differentiating E (i), w. r. t. x, we get
f(x)=2ax+bf'(x)=2ax+b ..(iii)
\Rightarrow f(2)=2a(2)+bf'(2)=2a\,(2)+b
\Rightarrow 4=4a+b4=4a+b ..(iv)
Again, differentiating E (iii) 0, we get
f(x)=2af''(x)=2a But f(1)=2f''(1)=2 (given)
\therefore f(1)=2af''(1)=2a
\Rightarrow 2=2a2=2a
\Rightarrow a=1a=1
On putting a=1a=1 in E (iv), we get
4=4+b4=4+b
\Rightarrow b=0b=0
On putting a=1,b=0a=1,\,b=0 and c=1c=1
in E (i), we get
f(x)=x2+1f(x)={{x}^{2}}+1