Question
Question: Let \(f:R\to R\) be a differentiable function \(f\left( 0 \right)=0\). If \(y=f\left( x \right)\) sa...
Let f:R→R be a differentiable function f(0)=0. If y=f(x) satisfies the differential equation dxdy=(2+5y)(5y−2), then the value of x→−∞limf(x)=k. Find the value of 5k.
Solution
Use separation of variable to initiate the integration. Use a partial fraction method to convert the integrand to the standard form of indefinite integration formula of x1. Then use the given initial condition to find out the value of constant occurred during integration. Finally use the concept limiting approach to determine the value of k.
Complete step-by-step answer:
The given differential equation is dxdy=(2+5y)(5y−2). Let us separate the variables at different sides,
$\begin{aligned}
& \dfrac{dy}{dx}=\left( 2+5y \right)\left( 5y-2 \right) \\\
& \Rightarrow \dfrac{dy}{\left( 5y+2 \right)\left( 5y-2 \right)}=dx....(1) \\\
\end{aligned}$
We use the partial fraction method to integrate the above. Let us suppose
\begin{aligned}
& I=\dfrac{1}{\left( 5y+2 \right)\left( 5y-2 \right)}=\dfrac{A}{5y+2}+\dfrac{B}{5y-2} \\\
& \Rightarrow 1=A\left( 5y-2 \right)+B\left( 5y+2 \right)....(2) \\\
\end{aligned}$$$$$
where AandBarerealnumbers.Weassigny=\dfrac{2}{5}inequation(2)togetB=\dfrac{1}{4}andthenassigny=-\dfrac{2}{5}togetA=\dfrac{-1}{4}. So we get $$$$
I=\dfrac{\dfrac{-1}{4}}{5y+2}+\dfrac{\dfrac{1}{4}}{5y-2}=\dfrac{1}{4}\left( \dfrac{1}{5y-2}-\dfrac{1}{5y+2} \right)$$$
Substituting above in equation (1) we proceed to integrate using substitution of variable and
the formula ∫x1=ln∣x∣+c ,