Solveeit Logo

Question

Question: Let \(f:R \to R\) be a continuous function which satisfies \(f\left( x \right) = \int_0^x {f\left( t...

Let f:RRf:R \to R be a continuous function which satisfies f(x)=0xf(t)dtf\left( x \right) = \int_0^x {f\left( t \right)dt} . Then the value of f(ln5)f\left( {\ln 5} \right) is,

Explanation

Solution

In this particular question differentiate the given equation w.r.t x according to the property that ddx(abf(x)dx)=(f(x))x=b(f(x))x=a\dfrac{d}{{dx}}\left( {\int_a^b {f\left( x \right)dx} } \right) = {\left( {f\left( x \right)} \right)_{x = b}} - {\left( {f\left( x \right)} \right)_{x = a}} so use these concepts to reach the solution of the question.

Complete step-by-step solution:
Given equation:
f(x)=0xf(t)dtf\left( x \right) = \int_0^x {f\left( t \right)dt} ............... (1)
Now we have to find out the value of f(ln5)f\left( {\ln 5} \right).
So, differentiate equation (1) w.r.t x we have,
ddxf(x)=ddx(0xf(t)dt)\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {\int_0^x {f\left( t \right)dt} } \right)
Now as we know that ddx(abf(x)dx)=(f(x))x=b(f(x))x=a\dfrac{d}{{dx}}\left( {\int_a^b {f\left( x \right)dx} } \right) = {\left( {f\left( x \right)} \right)_{x = b}} - {\left( {f\left( x \right)} \right)_{x = a}} so use this property we have,
ddxf(x)=(f(t))t=x(f(t))t=0\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = {\left( {f\left( t \right)} \right)_{t = x}} - {\left( {f\left( t \right)} \right)_{t = 0}}
ddxf(x)=f(x)f(0)\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f\left( x \right) - f\left( 0 \right).............. (2)
Now in equation (1) substitute x = 0 we have,
f(0)=00f(t)dt\Rightarrow f\left( 0 \right) = \int_0^0 {f\left( t \right)dt}
Now as we know that oof(x)dx=0\int_o^o {f\left( x \right)dx} = 0 irrespective of the function.
f(0)=0\Rightarrow f\left( 0 \right) = 0................ (3)
Now substitute this value in equation (2) we have,
ddxf(x)=f(x)\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f\left( x \right)
Now let f (x) = y
dydx=y\Rightarrow \dfrac{{dy}}{{dx}} = y
dyy=dx\Rightarrow \dfrac{{dy}}{y} = dx
Now integrate on both sides we have,
dyy=dx\Rightarrow \int {\dfrac{{dy}}{y}} = \int {dx}
Now as we know that 1xdx=lnx+c,1dx=x+c\int {\dfrac{1}{x}dx} = \ln x + c,\int {1dx = x + c} , where C is some arbitrary integration constant.
lny+c1=x+c2\Rightarrow \ln y + {c_1} = x + {c_2}
lny=x+c2c1\Rightarrow \ln y = x + {c_2} - {c_1}
Let, c2c1=C{c_2} - {c_1} = C new integration constant so we have,
lny=x+C\Rightarrow \ln y = x + C
Now take antilog on both sides we have,
y=ex+C\Rightarrow y = {e^{x + C}}
y=eCex\Rightarrow y = {e^C}{e^x}
Now let eC=A{e^C} = A new constant.
y=Aex\Rightarrow y = A{e^x}
Now substitute the value of y we have,
f(x)=Aex\Rightarrow f\left( x \right) = A{e^x}............... (4)
Now substitute x = 0 we have,
f(0)=Ae0=A\Rightarrow f\left( 0 \right) = A{e^0} = A
Now from equation (3) f (0) = 0 so we have,
A=0\Rightarrow A = 0
Now from equation (4), we have,
f(x)=0\Rightarrow f\left( x \right) = 0
Now substitute in place of x, x = ln 5 so we have,
f(ln5)=0\Rightarrow f\left( {\ln 5} \right) = 0
So this is the required answer.

Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic integration properties such as, 1xdx=lnx+c,1dx=x+c\int {\dfrac{1}{x}dx} = \ln x + c,\int {1dx = x + c} , where C is some arbitrary integration constant, and always recall how to differentiate the definite integral which is stated above.