Solveeit Logo

Question

Mathematics Question on Functions

Let f : R \setminus \left\\{ -\frac{1}{2} \right\\} \to R and g : R \setminus \left\\{ -\frac{5}{2} \right\\} \to R be defined as f(x)=2x+32x+1f(x) = \frac{2x + 3}{2x + 1} and g(x)=x+12x+5g(x) = \frac{|x| + 1}{2x + 5}. Then the domain of the function f(g(x))f(g(x)) is:

A

R \setminus \left\\{ -\frac{5}{2} \right\\}

B

RR

C

R \setminus \left\\{ -\frac{7}{4} \right\\}

D

R \setminus \left\\{ -\frac{5}{2}, -\frac{7}{4} \right\\}

Answer

R \setminus \left\\{ -\frac{5}{2} \right\\}

Explanation

Solution

For the function composition fg(x)f \circ g(x) to be defined, g(x)g(x) must be in the domain of ff. Given:
f(g(x))=2g(x)+32g(x)+1.f(g(x)) = \frac{2g(x) + 3}{2g(x) + 1}.

The domain of ff excludes x=32x = -\frac{3}{2}. Therefore, 2g(x)+102g(x) + 1 \neq 0. Solving:
2(x+12x+5)+1=0.2\left(\frac{|x| + 1}{2x + 5}\right) + 1 = 0.

Simplifying:
2(x+1)2x+5+1=0    x+1=2x+52.\frac{2(|x| + 1)}{2x + 5} + 1 = 0 \implies |x| + 1 = -\frac{2x + 5}{2}.

This yields no valid solutions in R\mathbb{R}. Therefore, the domain is:
\mathbb{R} \setminus \left\\{\frac{-5}{2}\right\\}.

Thus, the correct answer is: R \setminus \left\\{ -\frac{5}{2} \right\\}