Question
Mathematics Question on Functions
Let f : R \setminus \left\\{ -\frac{1}{2} \right\\} \to R and g : R \setminus \left\\{ -\frac{5}{2} \right\\} \to R be defined as f(x)=2x+12x+3 and g(x)=2x+5∣x∣+1. Then the domain of the function f(g(x)) is:
R \setminus \left\\{ -\frac{5}{2} \right\\}
R
R \setminus \left\\{ -\frac{7}{4} \right\\}
R \setminus \left\\{ -\frac{5}{2}, -\frac{7}{4} \right\\}
R \setminus \left\\{ -\frac{5}{2} \right\\}
Solution
For the function composition f∘g(x) to be defined, g(x) must be in the domain of f. Given:
f(g(x))=2g(x)+12g(x)+3.
The domain of f excludes x=−23. Therefore, 2g(x)+1=0. Solving:
2(2x+5∣x∣+1)+1=0.
Simplifying:
2x+52(∣x∣+1)+1=0⟹∣x∣+1=−22x+5.
This yields no valid solutions in R. Therefore, the domain is:
\mathbb{R} \setminus \left\\{\frac{-5}{2}\right\\}.
Thus, the correct answer is: R \setminus \left\\{ -\frac{5}{2} \right\\}