Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Let f:RRf : R \rightarrow R be a continuous function such that f(3x)f(x)=xf (3x)- f(x)= x. If f(8)=7f(8)=7, then f(14)f (14) is equal to :

A

4

B

10

C

11

D

16

Answer

10

Explanation

Solution

The correct option is (B) : 10
f(x)f(x3)=x3f(x)-f(\frac{x}{3})=\frac{x}{3}
f(x3)f(x32)=x32f(\frac{x}{3})-f(\frac{x}{3^2})=\frac{x}{3^2}
By adding this …...
f(x)limnf(x3n)=x(13+132.....)f(x)-\lim\limits_{n\rightarrow\infty}f(\frac{x}{3^n})=x(\frac{1}{3}+\frac{1}{3^2}.....\infty)
f(x)f(0)=x2f(x)-f(0)=\frac{x}{2}
f(8)=7;f(0)=3f(8)=7;f(0)=3
f(x)=x2+3f(x)=\frac{x}{2}+3
f(14)=10f(14)=10