Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

Let f:RRf: R \rightarrow R be a continuous function which satisfies f(x)=0xf(t)dtf(x)=\int\limits_{0}^{x} f(t) d t. Then, the value of f(loge5)f\left(\log _{e} 5\right) is

A

0

B

2

C

-5

D

3

Answer

0

Explanation

Solution

Given, f(x)=0xf(t)dtf(x)=\int\limits_{0}^{x} f(t) d t ...(i)
Using Leibnitz theorem, we get
f(x)=f(x)f(x)=kexf'(x)=f(x) \Rightarrow f(x)=k e^{x}
On putting x=0x=0 in E (i), we get
f(0)=00f(t)dtf(0)=\int\limits_{0}^{0} f(t) d t
kθ0=0\Rightarrow k \theta^{0} =0
[aaf(x)dx=0]\left[\because \int\limits_{a}^{a} f(x) d x=0\right]
k=0[e0=1]\Rightarrow k=0 \left[\because e^{0}=1\right]
f(x)=0\therefore f(x)=0
f(loge5)=0\Rightarrow f\left(\log _{e} 5\right)=0