Question
Mathematics Question on Integrals of Some Particular Functions
Let f:R→R be a continuous function which satisfies f(x)=0∫xf(t)dt. Then, the value of f(loge5) is
A
0
B
2
C
-5
D
3
Answer
0
Explanation
Solution
Given, f(x)=0∫xf(t)dt ...(i)
Using Leibnitz theorem, we get
f′(x)=f(x)⇒f(x)=kex
On putting x=0 in E (i), we get
f(0)=0∫0f(t)dt
⇒kθ0=0
[∵a∫af(x)dx=0]
⇒k=0[∵e0=1]
∴f(x)=0
⇒f(loge5)=0