Solveeit Logo

Question

Mathematics Question on composite of functions

Let f:RRf:\R \rightarrow \R and g:RRg:\R \rightarrow\R be functions defined by
f(x)=\left\\{ \begin{array}{ll} x|x|\sin(\frac{1}{x}), & x\ne0 \\\ 0, & x = 0, \end{array} \right.\text{and} \ g(x)=\left\\{ \begin{array}{ll} 1-2x, & 0\leq x\leq \frac{1}{2}, \\\ 0, & \text{otherwise.} \end{array} \right.
Let a,b,c,dRa,b,c,d \in \R. Define the function h:RRh:\R\rightarrow\R by
h(x)=af(x)+b(g(x)+g(12x))+c(xg(x))+d g(x),xRh(x)=af(x)+b(g(x)+g(\frac{1}{2}-x))+c(x-g(x))+d\ g(x), x\in\R.

Match each entry in List-I to the correct entry in List-II.List - IList - II
(P)If a = 0, b = 1, c = 0 and d = 0, then
(Q)If a = 1, b = 0, c = 0 and d = 0, then
(R)If a = 0, b = 0, c = 1 and d = 0, then
(S)If a = 0, b = 0, c = 0 and d = 1, then
(5)
The correct option is
A

(P) → (4) (Q) → (3) (R) → (1) (S) → (2)

B

(P) → (5) (Q) → (2) (R) → (4) (S) → (3)

C

(P) → (5) (Q) → (3) (R) → (2) (S) → (4)

D

(P) → (4) (Q) → (2) (R) → (1) (S) → (3)

Answer

(P) → (5) (Q) → (3) (R) → (2) (S) → (4)

Explanation

Solution

The correct option is (C):(P) → (5) (Q) → (3) (R) → (2) (S) → (4).