Question
Question: Let \(f: \mathbb{R} \to (0,1)\) be a continuous function, then which of the following pair of vector...
Let f:R→(0,1) be a continuous function, then which of the following pair of vectors are linearly dependent for some x∈(0,1)?

A
a=f(x)i^+2j^;b=x2i^+3j^
B
a=f(x)i^+3j^;b=x2i^+2j^
C
a=(∫01−xf(t)dt)i^+3j^;b=xi^+2j^
D
a=(∫01−xf(t)dt)i^+2j^;b=xi^+3j^
Answer
B, C and D
Explanation
Solution
To test linear dependence of a=(a1,a2) and b=(b1,b2), set the determinant to zero:
D=a1a2b1b2=a1b2−a2b1=0.- Option A: D=f(x)⋅3−2⋅x2=3f(x)−2x2. Since f(x)∈(0,1), 3f(x)∈(0,3) and 2x2∈(0,2), so D>0. Never zero.
- Option B: D=f(x)⋅2−3⋅x2=2f(x)−3x2. At x→0, D≈2f(0)>0. At x→1, D=2f(1)−3<2−3=−1<0. By the Intermediate Value Theorem, D=0 for some x∈(0,1).
- Option C: D=(∫01−xf(t)dt)⋅2−3⋅x=2∫01−xf(t)dt−3x. At x=0, D=2∫01f>0. At x=1, D=−3<0. Hence zero in (0,1).
- Option D: D=(∫01−xf(t)dt)⋅3−2⋅x=3∫01−xf(t)dt−2x. At x=0, positive; at x=1, −2<0. Again zero by continuity.
Therefore, options B, C and D are correct.