Solveeit Logo

Question

Question: Let \(f: \mathbb{R} \to (0,1)\) be a continuous function, then which of the following pair of vector...

Let f:R(0,1)f: \mathbb{R} \to (0,1) be a continuous function, then which of the following pair of vectors are linearly dependent for some x(0,1)x \in (0,1)?

A

a=f(x)i^+2j^;b=x2i^+3j^\vec{a} = f(x)\hat{i} + 2\hat{j}; \quad \vec{b} = x^2\hat{i} + 3\hat{j}

B

a=f(x)i^+3j^;b=x2i^+2j^\vec{a} = f(x)\hat{i} + 3\hat{j}; \quad \vec{b} = x^2\hat{i} + 2\hat{j}

C

a=(01xf(t)dt)i^+3j^;b=xi^+2j^\vec{a} = \Bigl(\int_{0}^{1-x} f(t)\,dt\Bigr)\hat{i} + 3\hat{j}; \quad \vec{b} = x\hat{i} + 2\hat{j}

D

a=(01xf(t)dt)i^+2j^;b=xi^+3j^\vec{a} = \Bigl(\int_{0}^{1-x} f(t)\,dt\Bigr)\hat{i} + 2\hat{j}; \quad \vec{b} = x\hat{i} + 3\hat{j}

Answer

B, C and D

Explanation

Solution

To test linear dependence of a=(a1,a2)\vec a=(a_1,a_2) and b=(b1,b2)\vec b=(b_1,b_2), set the determinant to zero:

D=a1b1a2b2=a1b2a2b1=0.D = \begin{vmatrix} a_1 & b_1\\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1 = 0.
  1. Option A: D=f(x)32x2=3f(x)2x2D = f(x)\cdot3 - 2\cdot x^2 = 3f(x) - 2x^2. Since f(x)(0,1)f(x)\in(0,1), 3f(x)(0,3)3f(x)\in(0,3) and 2x2(0,2)2x^2\in(0,2), so D>0D>0. Never zero.
  2. Option B: D=f(x)23x2=2f(x)3x2D = f(x)\cdot2 - 3\cdot x^2 = 2f(x) - 3x^2. At x0x\to0, D2f(0)>0D\approx2f(0)>0. At x1x\to1, D=2f(1)3<23=1<0D=2f(1)-3<2-3=-1<0. By the Intermediate Value Theorem, D=0D=0 for some x(0,1)x\in(0,1).
  3. Option C: D=(01xf(t)dt)23x=2 ⁣01xf(t)dt3xD = \bigl(\int_{0}^{1-x}f(t)\,dt\bigr)\cdot2 - 3\cdot x = 2\!\int_{0}^{1-x}f(t)\,dt - 3x. At x=0x=0, D=2 ⁣01f>0D = 2\!\int_{0}^{1}f>0. At x=1x=1, D=3<0D = -3<0. Hence zero in (0,1)(0,1).
  4. Option D: D=(01xf(t)dt)32x=3 ⁣01xf(t)dt2xD = \bigl(\int_{0}^{1-x}f(t)\,dt\bigr)\cdot3 - 2\cdot x = 3\!\int_{0}^{1-x}f(t)\,dt - 2x. At x=0x=0, positive; at x=1x=1, 2<0-2<0. Again zero by continuity.
    Therefore, options B, C and D are correct.