Solveeit Logo

Question

Mathematics Question on Functions

Let f: ℝ -> ℝ satisfy f(x + y) = 2 x f(y) + 4 y f(x), ∀ x, y∈ ℝ. If f(2) = 3, then 14. f'(4)/f'(2) is equal to ___.

Answer

The correct answer is 248
f(x + y) = 2 x f(y) + 4 y f(x) …(1)
Now, f(y + x) 2 y f(x) + 4 x f(y) …(2)
∴ 2 x f(y) + 4 y f(x) = 2 y f(x) + 4 x f(y)
(4 y – 2 y) f(x) = (4 x – 2 x) f(y)
ƒ(x)4x2x=ƒ(y)4y2y=k(Say)\frac{ƒ(x)}{4x - 2x} = \frac{ƒ(y)}{4y - 2y} = k (Say)
f(x) = k(4x – 2x)
f(2) = 3 then
k=14k = \frac{1}{4}
ƒ(x)=4x2x4∴ ƒ(x) = \frac{4x - 2x}{4}
ƒ′(x)=4xIn42xIn24∴ ƒ′(x) = \frac{4^xIn4 - 2^xIn2}{4}
ƒ′(x)=(2.4x2x)In24ƒ′(x) = \frac{(2.4^x - 2^x ) In2}{4}
ƒ′(4)ƒ′(2)=2.256162.164\frac{ƒ′(4)}{ƒ′(2)}= \frac{2.256 - 16}{2.16 - 4}
14ƒ′(4)ƒ′(2)=248∴ 14 \frac{ƒ′(4)}{ƒ′(2)} = 248