Question
Mathematics Question on Functions
Let f: ℝ -> ℝ satisfy f(x + y) = 2 x f(y) + 4 y f(x), ∀ x, y∈ ℝ. If f(2) = 3, then 14. f'(4)/f'(2) is equal to ___.
Answer
The correct answer is 248
∵ f(x + y) = 2 x f(y) + 4 y f(x) …(1)
Now, f(y + x) 2 y f(x) + 4 x f(y) …(2)
∴ 2 x f(y) + 4 y f(x) = 2 y f(x) + 4 x f(y)
(4 y – 2 y) f(x) = (4 x – 2 x) f(y)
4x−2xƒ(x)=4y−2yƒ(y)=k(Say)
∴ f(x) = k(4x – 2x)
∵ f(2) = 3 then
k=41
∴ƒ(x)=44x−2x
∴ƒ′(x)=44xIn4−2xIn2
ƒ′(x)=4(2.4x−2x)In2
∴ ƒ′(2)ƒ′(4)=2.16−42.256−16
∴14ƒ′(2)ƒ′(4)=248